Evaluate ∬R(x-y)^{2}sin^{2}(x+y)d xdy, where R is the rhombus withsuccessive vertices at (π,0),(2π,π),(π,2t) and (0,π)
∬_R(x-y)^{2}sin^{2}(x+y)d xdy\\ ∬_R((x-y)sin(x+y))^2d xdy\\ G(u,v)
= (\frac{u+v}{2}, \frac{u-v}{2})\\ x= \frac{u+v}{2}, y= \frac{u-v}{2}\\ dxdy
= |J(u,v)|dudv\\ J(u,v)=\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}
= \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix}
= \frac{1}{2}\\ ∬_R ((x-y) sin(x+y)) ^2d xdy
= \int_0^{2 \pi}\int_0^{2 \pi}(v-\sin u) J(u,v)d udv\\
= \int_0^{2 \pi}\int_0^{2 \pi}v^2\sin^2 u (\frac{1}{2})d udv\\
= \frac{1}{2}\int_0^{2 \pi}dv\int_0^{2 \pi}\sin^2 udu\
\ = \frac{1}{2}(2 \pi)\int_0^{2 \pi}(\frac{1-\cos 2 u}{2})du\\ = \frac{1}{2}(2 \pi)[\frac{1}{2}u -\frac{\sin 2 u}{u}]_0^{2 \pi}\\
= \frac{1}{2}(2\pi)( \frac{1}{2} (2 \pi))\\
=\pi^2∬R(x−y)2sin2(x+y)dxdy∬R((x−y)sin(x+y))2dxdyG(u,v)=(2u+v,2u−v)x=2u+v,y=2u−vdxdy=∣J(u,v)∣dudvJ(u,v)
=∣∣∣∣∣∂u∂x∂u∂y∂v∂x∂v∂y∣∣∣∣∣=∣∣∣∣∣212121−21∣∣∣∣∣=21∬R((x−y)sin(x+y))2dxdy=∫02π∫02π(v−sinu)J(u,v)dudv
=∫02π∫02πv2sin2u(21)dudv=21∫02πdv∫02πsin2udu=21(2π)∫02π(21−cos2u)du=21(2π)[21u−usin2u]02
π=21(2π)(21(2π))
=π2
Comments
Leave a comment