yexdx+(2y+ex)dy=0AnODEM(x,y)+N(x,y)y′=0isinexactformifthefollowingholds:1.ThereexistsafunctionΨ(x,y)suchthatΨx(x,y)=M(x,y),Ψy(x,y)=N(x,y)2.Ψ(x,y)hascontinuouspartialderivatives:∂y∂M(x,y)=∂y∂x∂2Ψ(x,y)=∂x∂y∂2Ψ(x,y)=∂x∂N(x,y)Letybethedependentvariable.Dividebydx:yex+(2y+ex)dxdy=0Substitutedxdywithy′yex+(2y+ex)y′=0Iftheconditionsaremet,thenΨx+Ψy⋅y′=dxdΨ(x,y)=0ThegeneralsolutionisΨ(x,y)=CTrueΨ(x,y)=c2exy+y2+c1=c2Combinetheconstantsexy+y2=c1y=2−ex+e2x+4c1,y=2−ex−e2x+4c1y=2−ex+e2x+c1,y=2−ex−e2x+c1
Comments
Leave a comment