Question #224869

Solve the initial value problem y²y'-y^3 tanx = sin x cos² x, y(0)=1


1
Expert's answer
2021-08-17T12:14:01-0400

y2yy3tan(x)=sin(x)cos2(x)AfirstorderBernoulliODEhastheformofy+p(x)y=q(x)ynytan(x)y=sin(x)cos2(x)y2Thegeneralsolutionisobtainedbysubstitutingv=y1nandsolving11nv+p(x)v=q(x)ν=cos3(x)2+c1cos3(x)y3=cos3(x)2+c1cos3(x)y=223cos6(x)+332cos(x)y=223cos6(x)+332cos(x)y^2y'\:-y^3\tan \left(x\right)=\sin \left(x\right)\cos ^2\left(x\right)\\ \mathrm{A\:first\:order\:Bernoulli\:ODE\:has\:the\:form\:of\:}y'+p\left(x\right)y=q\left(x\right)y^n\\ y'\:-\tan \left(x\right)y=\sin \left(x\right)\cos ^2\left(x\right)y^{-2}\\ \mathrm{The\:general\:solution\:is\:obtained\:by\:substituting\:}v=y^{1-n}\mathrm{\:and\:solving\:}\frac{1}{1-n}v'+p\left(x\right)v=q\left(x\right)\\ ν=-\frac{\cos ^3\left(x\right)}{2}+\frac{c_1}{\cos ^3\left(x\right)}\\ y^3=-\frac{\cos ^3\left(x\right)}{2}+\frac{c_1}{\cos ^3\left(x\right)}\\ y=\frac{2^{\frac{2}{3}}\sqrt[3]{-\cos ^6\left(x\right)+3}}{2\cos \left(x\right)}\\ y=\frac{2^{\frac{2}{3}}\sqrt[3]{-\cos ^6\left(x\right)+3}}{2\cos \left(x\right)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS