y 2 y ′ − y 3 tan ( x ) = sin ( x ) cos 2 ( x ) A f i r s t o r d e r B e r n o u l l i O D E h a s t h e f o r m o f y ′ + p ( x ) y = q ( x ) y n y ′ − tan ( x ) y = sin ( x ) cos 2 ( x ) y − 2 T h e g e n e r a l s o l u t i o n i s o b t a i n e d b y s u b s t i t u t i n g v = y 1 − n a n d s o l v i n g 1 1 − n v ′ + p ( x ) v = q ( x ) ν = − cos 3 ( x ) 2 + c 1 cos 3 ( x ) y 3 = − cos 3 ( x ) 2 + c 1 cos 3 ( x ) y = 2 2 3 − cos 6 ( x ) + 3 3 2 cos ( x ) y = 2 2 3 − cos 6 ( x ) + 3 3 2 cos ( x ) y^2y'\:-y^3\tan \left(x\right)=\sin \left(x\right)\cos ^2\left(x\right)\\
\mathrm{A\:first\:order\:Bernoulli\:ODE\:has\:the\:form\:of\:}y'+p\left(x\right)y=q\left(x\right)y^n\\
y'\:-\tan \left(x\right)y=\sin \left(x\right)\cos ^2\left(x\right)y^{-2}\\
\mathrm{The\:general\:solution\:is\:obtained\:by\:substituting\:}v=y^{1-n}\mathrm{\:and\:solving\:}\frac{1}{1-n}v'+p\left(x\right)v=q\left(x\right)\\
ν=-\frac{\cos ^3\left(x\right)}{2}+\frac{c_1}{\cos ^3\left(x\right)}\\
y^3=-\frac{\cos ^3\left(x\right)}{2}+\frac{c_1}{\cos ^3\left(x\right)}\\
y=\frac{2^{\frac{2}{3}}\sqrt[3]{-\cos ^6\left(x\right)+3}}{2\cos \left(x\right)}\\
y=\frac{2^{\frac{2}{3}}\sqrt[3]{-\cos ^6\left(x\right)+3}}{2\cos \left(x\right)} y 2 y ′ − y 3 tan ( x ) = sin ( x ) cos 2 ( x ) A first order Bernoulli ODE has the form of y ′ + p ( x ) y = q ( x ) y n y ′ − tan ( x ) y = sin ( x ) cos 2 ( x ) y − 2 The general solution is obtained by substituting v = y 1 − n and solving 1 − n 1 v ′ + p ( x ) v = q ( x ) ν = − 2 c o s 3 ( x ) + c o s 3 ( x ) c 1 y 3 = − 2 c o s 3 ( x ) + c o s 3 ( x ) c 1 y = 2 c o s ( x ) 2 3 2 3 − c o s 6 ( x ) + 3 y = 2 c o s ( x ) 2 3 2 3 − c o s 6 ( x ) + 3
Comments