Evaluate ∫0^π\2α α sin αx dx,α>0 by using Leibniz formula.
Compute the definite integral:
"\\int_0^{\\frac{1}{2}\\pi \\alpha} \\alpha \\sin (\\alpha x)dx\\\\"
Factor out constants:
"\\alpha \\int_0^{\\frac{1}{2}\\pi \\alpha} \\sin (\\alpha x)dx\\\\"
For the integrand "\\sin \\alpha x" , substitute "u= \\alpha x" and "du = \\alpha dx" . This gives a new lower bound "u=0 \\space \\alpha = 0" and upper bound "u= \\alpha (0.5 \\pi \\alpha)= 0.5 \\pi \\alpha^2"
"\\int_0^{\\frac{1}{2}\\pi \\alpha^2} \\sin (u)du\\\\"
Apply the fundamental theorem of calculus.
The antiderivative of "sin(u) \\space is -cos(u)"
"=(-\\cos (u))|_{0}^{0.5 \\pi \\alpha^2}"
Evaluate the antiderivative at the limits and subtract.
"=(-\\cos (u))|_{0}^{0.5 \\pi \\alpha^2}= (-\\cos (0.5 \\pi \\alpha^2))-(-\\cos (0))\\\\\n=1-\\cos(0.5 \\pi \\alpha^2)"
Comments
Leave a comment