Answer to Question #224864 in Chemical Engineering for Lokika

Question #224864

Evaluate ∫0^π\2α α sin αx dx,α>0 by using Leibniz formula.


1
Expert's answer
2021-08-16T02:19:24-0400

Compute the definite integral:

"\\int_0^{\\frac{1}{2}\\pi \\alpha} \\alpha \\sin (\\alpha x)dx\\\\"

Factor out constants:

"\\alpha \\int_0^{\\frac{1}{2}\\pi \\alpha} \\sin (\\alpha x)dx\\\\"

For the integrand "\\sin \\alpha x" , substitute "u= \\alpha x" and "du = \\alpha dx" . This gives a new lower bound "u=0 \\space \\alpha = 0" and upper bound "u= \\alpha (0.5 \\pi \\alpha)= 0.5 \\pi \\alpha^2"

"\\int_0^{\\frac{1}{2}\\pi \\alpha^2} \\sin (u)du\\\\"

Apply the fundamental theorem of calculus.

The antiderivative of "sin(u) \\space is -cos(u)"

"=(-\\cos (u))|_{0}^{0.5 \\pi \\alpha^2}"

Evaluate the antiderivative at the limits and subtract.

"=(-\\cos (u))|_{0}^{0.5 \\pi \\alpha^2}= (-\\cos (0.5 \\pi \\alpha^2))-(-\\cos (0))\\\\\n=1-\\cos(0.5 \\pi \\alpha^2)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS