Answer to Question #224864 in Chemical Engineering for Lokika

Question #224864

Evaluate ∫0^π\2α α sin αx dx,α>0 by using Leibniz formula.


1
Expert's answer
2021-08-16T02:19:24-0400

Compute the definite integral:

012πααsin(αx)dx\int_0^{\frac{1}{2}\pi \alpha} \alpha \sin (\alpha x)dx\\

Factor out constants:

α012παsin(αx)dx\alpha \int_0^{\frac{1}{2}\pi \alpha} \sin (\alpha x)dx\\

For the integrand sinαx\sin \alpha x , substitute u=αxu= \alpha x and du=αdxdu = \alpha dx . This gives a new lower bound u=0 α=0u=0 \space \alpha = 0 and upper bound u=α(0.5πα)=0.5πα2u= \alpha (0.5 \pi \alpha)= 0.5 \pi \alpha^2

012πα2sin(u)du\int_0^{\frac{1}{2}\pi \alpha^2} \sin (u)du\\

Apply the fundamental theorem of calculus.

The antiderivative of sin(u) iscos(u)sin(u) \space is -cos(u)

=(cos(u))00.5πα2=(-\cos (u))|_{0}^{0.5 \pi \alpha^2}

Evaluate the antiderivative at the limits and subtract.

=(cos(u))00.5πα2=(cos(0.5πα2))(cos(0))=1cos(0.5πα2)=(-\cos (u))|_{0}^{0.5 \pi \alpha^2}= (-\cos (0.5 \pi \alpha^2))-(-\cos (0))\\ =1-\cos(0.5 \pi \alpha^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog