∫ y = 0 1 ∫ x = y 2 2 − y 2 y 2 x 2 + y 2 d x d y ∫_{y=0}^{1}∫_{x=y}^{2 \sqrt{2-y^{2}}}\frac{y}{2\sqrt{x^{2}+y^{2}}}dxdy\\ ∫ y = 0 1 ∫ x = y 2 2 − y 2 2 x 2 + y 2 y d x d y
In this x and y are from 0 < y < 1 a n d y < x < 2 2 − y 2 0<y<1 \space and \space y<x< 2\sqrt{2-y^2}\\ 0 < y < 1 an d y < x < 2 2 − y 2
So we can change it as 0 < x < 1 a n d x < y < 2 − x 2 4 0<x<1 \space and \space x<y< \sqrt{2-\frac{x^2}{4}}\\ 0 < x < 1 an d x < y < 2 − 4 x 2
∫ y = 0 1 ∫ x = y 2 2 − y 2 y 2 x 2 + y 2 d x d y = ∫ x = 0 1 ∫ y = x 2 − x 2 4 y 2 x 2 + y 2 d y d x ∫ 0 1 ∫ x 2 − x 2 4 y 2 x 2 + y 2 d y d x = 1 4 ( 3 x 2 + 8 − 2 2 x ) = ∫ 0 1 1 4 ( 3 x 2 + 8 − 2 2 x ) d x = 1 4 ( 11 2 + 2 3 ln ( 7 + 33 4 ) − 2 ) = 1 4 ( 11 2 + 2 3 ln ( 7 + 33 4 ) − 2 ) = 0.39554 ∫_{y=0}^{1}∫_{x=y}^{2 \sqrt{2-y^{2}}}\frac{y}{2\sqrt{x^{2}+y^{2}}}dxdy = ∫_{x=0}^{1}∫_{y=x}^{\sqrt{2-\frac{x^2}{4}}}\frac{y}{2\sqrt{x^{2}+y^{2}}}dydx \\
\int _0^1\int _x^{\sqrt{2-\frac{x^2}{4}}}\frac{y}{2\sqrt{x^2+y^2}}dydx\\
=\frac{1}{4}\left(\sqrt{3x^2+8}-2\sqrt{2}x\right)\\
=\int _0^1\frac{1}{4}\left(\sqrt{3x^2+8}-2\sqrt{2}x\right)dx\\
=\frac{1}{4}\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{3}}\ln \left(\frac{7+\sqrt{33}}{4}\right)-\sqrt{2}\right)\\
=\frac{1}{4}\left(\frac{\sqrt{11}}{2}+\frac{2}{\sqrt{3}}\ln \left(\frac{7+\sqrt{33}}{4}\right)-\sqrt{2}\right)\\
=0.39554 ∫ y = 0 1 ∫ x = y 2 2 − y 2 2 x 2 + y 2 y d x d y = ∫ x = 0 1 ∫ y = x 2 − 4 x 2 2 x 2 + y 2 y d y d x ∫ 0 1 ∫ x 2 − 4 x 2 2 x 2 + y 2 y d y d x = 4 1 ( 3 x 2 + 8 − 2 2 x ) = ∫ 0 1 4 1 ( 3 x 2 + 8 − 2 2 x ) d x = 4 1 ( 2 11 + 3 2 ln ( 4 7 + 33 ) − 2 ) = 4 1 ( 2 11 + 3 2 ln ( 4 7 + 33 ) − 2 ) = 0.39554
Comments