Given DE:
y′′(x)−6y′(x)+13y(x)=20e3xcos(x+5)The characteristic equation for homogeneous DE
k2−6k+13=0Roots:
k1=3−2i,k2=3+2iThus, the general solution of homogeneous DE
yh(x)=e3x(C1cos2x+C2sin2x)The partial solution of inhomogeneous DE
yi(x)=320e3xcos(x+5)Finally,
y(x)=yh(x)+yi(x)==e3x(C1cos2x+C2sin2x)+320e3xcos(x+5)
Comments