Solve d^{2}y/dx^{2}-6dy/dx+13y=20e^{3x}cos(1x+5)
Given DE:
The characteristic equation for homogeneous DE
Roots:
"k_1=3-2i,\\quad k_2=3+2i"Thus, the general solution of homogeneous DE
"y_h(x)=e^{3x}(C_1 \\cos 2x+C_2\\sin 2x)"The partial solution of inhomogeneous DE
"y_i(x)=\\frac{20}{3}e^{3x}\\cos(x+5)"Finally,
"y(x)=y_h(x)+y_i(x)=\\\\\n=e^{3x}(C_1 \\cos 2x+C_2\\sin 2x)+\\frac{20}{3}e^{3x}\\cos(x+5)"
Comments
Leave a comment