Question #223870

Solve d^{2}y/dx^{2}-6dy/dx+13y=20e^{3x}cos(1x+5)


1
Expert's answer
2021-08-26T01:05:04-0400

Given DE:


y(x)6y(x)+13y(x)=20e3xcos(x+5)y''(x)-6y'(x)+13y(x)=20 e^{3x}\cos (x+5)

The characteristic equation for homogeneous DE


k26k+13=0k^2-6k+13=0

Roots:

k1=32i,k2=3+2ik_1=3-2i,\quad k_2=3+2i

Thus, the general solution of homogeneous DE

yh(x)=e3x(C1cos2x+C2sin2x)y_h(x)=e^{3x}(C_1 \cos 2x+C_2\sin 2x)

The partial solution of inhomogeneous DE

yi(x)=203e3xcos(x+5)y_i(x)=\frac{20}{3}e^{3x}\cos(x+5)

Finally,

y(x)=yh(x)+yi(x)==e3x(C1cos2x+C2sin2x)+203e3xcos(x+5)y(x)=y_h(x)+y_i(x)=\\ =e^{3x}(C_1 \cos 2x+C_2\sin 2x)+\frac{20}{3}e^{3x}\cos(x+5)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS