Solve d^{2}y/dx^{2}+2dy/dx+y=xsinx
The characteristic equation of the homogeneous DE
"k^2+2k+1=0"Roots
"k_1=k_2=-1"Hence, the general solution of homogeneous DE
"y_h(x)=C_1e^{-x}+C_2xe^{-x}"The partial solution of inhomogeneous DE
"y_i(x)=(A+Bx)\\sin x+(C+Dx)\\cos x"We get
"y'_i(x)=(A+Bx)\\cos x-(C+Dx)\\sin x\\\\+B\\sin x+D\\cos x""y''_i(x)=-(A+Bx)\\sin x-(C+Dx)\\cos x\\\\+2B\\cos x-2D\\sin x"
"-(A+Bx)\\sin x-(C+Dx)\\cos x\\\\+2B\\cos x-2D\\sin x+2((A+Bx)\\cos x\\\\-(C+Dx)\\sin x+B\\sin x+D\\cos x)\\\\+(A+Bx)\\sin x+(C+Dx)\\cos x\\\\=x \\sin x"
So, the partial solution of inhomogeneous DE
"y_i(x)=\\frac{1}{2}(\\cos x-x\\cos x+\\sin x)"Finally,
"y(x)=C_1e^{-x}+C_2xe^{-x}\\\\+\\frac{1}{2}(\\cos x-x\\cos x+\\sin x)"
Comments
Leave a comment