Question #245516

A firm wants to minimize cost when Q=160=2√KL ;r=4 k=2

a) write out the Lagrangian function

b) Find K* and L*

c).Is the second-order sufficient condition for minimum satisfied?


1
Expert's answer
2021-10-02T10:49:29-0400

a) The Lagrangian can be written as

l=4K+2L+λ[80KL]l=4K+2L+\lambda[80-\sqrt{KL}]

where λ is the Lagrange multiplier.


b)

The first order conditions can be written as

δlδK=4λ12K12L12=0or8=λLK.....(1)δlδK=2λ12K12L12=0or4=λKL.......(2)δlδK=80KL.....(3)\frac{\delta l}{\delta K}=4-\lambda \frac{ 1}{2}K^{\frac{-1}{2}}L^{\frac{1}{2}}=0\\or\\8=\lambda \sqrt{\frac{L}{K}}.....(1)\\ \frac{\delta l}{\delta K}=2-\lambda \frac{ 1}{2}K^{\frac{1}{2}}L^{\frac{-1}{2}}=0\\ or\\ 4=\lambda \sqrt{\frac{K}{L}}.......(2)\\ \frac{\delta l}{\delta K}=80-\sqrt{KL}.....(3)


Now, (1)/(2) gives -

2 = L/K or L = 2K

 

Substituting this value in (3) gives -

2=LKorL=2K2 =\frac{ L}{K}\\ or\\ L = 2K

Substituting this value in (3) gives -


2K2=80orK=802=56.5L=1602=113.14\sqrt{2K^2}=80\\or\\ K^*=\frac{80}{\sqrt{2}}=56.5\\ L^*=\frac{160}{\sqrt{2}}=113.14


c.

Second order conditions are 

δ2lδK2=λ2(12)K32L12=λL4K32>0\frac{\delta ^2 l}{\delta K^2}=-\frac{\lambda}{2}(-\frac{1}{2})K^{\frac{-3}{2}}L^{\frac{1}{2}}\\=\frac{\lambda \sqrt{L}}{4K^{\frac{-3}{2}}}>0

δ2lδL2=λ2(12)K12L32=λK4L32>0\frac{\delta ^2 l}{\delta L^2}=-\frac{\lambda}{2}(-\frac{1}{2})K^{\frac{1}{2}}L^{\frac{-3}{2}}\\ =\frac{\lambda \sqrt{K}}{4L^{\frac{3}{2}}}>0

Since second order partial derivatives are positive, hence we can conclude that condition for cost minimisation is satisfied.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS