A firm wants to minimize cost when Q=160=2√KL ;r=4 k=2
a) write out the Lagrangian function
b) Find K* and L*
c).Is the second-order sufficient condition for minimum satisfied?
a) The Lagrangian can be written as
"l=4K+2L+\\lambda[80-\\sqrt{KL}]"
where λ is the Lagrange multiplier.
b)
The first order conditions can be written as
"\\frac{\\delta l}{\\delta K}=4-\\lambda \\frac{ 1}{2}K^{\\frac{-1}{2}}L^{\\frac{1}{2}}=0\\\\or\\\\8=\\lambda \\sqrt{\\frac{L}{K}}.....(1)\\\\\n\n\\frac{\\delta l}{\\delta K}=2-\\lambda \\frac{ 1}{2}K^{\\frac{1}{2}}L^{\\frac{-1}{2}}=0\\\\\nor\\\\\n4=\\lambda \\sqrt{\\frac{K}{L}}.......(2)\\\\\n\n\\frac{\\delta l}{\\delta K}=80-\\sqrt{KL}.....(3)"
Now, (1)/(2) gives -
2 = L/K or L = 2K
Substituting this value in (3) gives -
"2 =\\frac{ L}{K}\\\\ or\\\\ L = 2K"
Substituting this value in (3) gives -
"\\sqrt{2K^2}=80\\\\or\\\\\nK^*=\\frac{80}{\\sqrt{2}}=56.5\\\\\nL^*=\\frac{160}{\\sqrt{2}}=113.14"
c.
Second order conditions are
"\\frac{\\delta ^2 l}{\\delta K^2}=-\\frac{\\lambda}{2}(-\\frac{1}{2})K^{\\frac{-3}{2}}L^{\\frac{1}{2}}\\\\=\\frac{\\lambda \\sqrt{L}}{4K^{\\frac{-3}{2}}}>0"
"\\frac{\\delta ^2 l}{\\delta L^2}=-\\frac{\\lambda}{2}(-\\frac{1}{2})K^{\\frac{1}{2}}L^{\\frac{-3}{2}}\\\\\n\n=\\frac{\\lambda \\sqrt{K}}{4L^{\\frac{3}{2}}}>0"
Since second order partial derivatives are positive, hence we can conclude that condition for cost minimisation is satisfied.
Comments
Leave a comment