a) The Lagrangian can be written as
l = 4 K + 2 L + λ [ 80 − K L ] l=4K+2L+\lambda[80-\sqrt{KL}] l = 4 K + 2 L + λ [ 80 − K L ]
where λ is the Lagrange multiplier.
b)
The first order conditions can be written as
δ l δ K = 4 − λ 1 2 K − 1 2 L 1 2 = 0 o r 8 = λ L K . . . . . ( 1 ) δ l δ K = 2 − λ 1 2 K 1 2 L − 1 2 = 0 o r 4 = λ K L . . . . . . . ( 2 ) δ l δ K = 80 − K L . . . . . ( 3 ) \frac{\delta l}{\delta K}=4-\lambda \frac{ 1}{2}K^{\frac{-1}{2}}L^{\frac{1}{2}}=0\\or\\8=\lambda \sqrt{\frac{L}{K}}.....(1)\\
\frac{\delta l}{\delta K}=2-\lambda \frac{ 1}{2}K^{\frac{1}{2}}L^{\frac{-1}{2}}=0\\
or\\
4=\lambda \sqrt{\frac{K}{L}}.......(2)\\
\frac{\delta l}{\delta K}=80-\sqrt{KL}.....(3) δK δ l = 4 − λ 2 1 K 2 − 1 L 2 1 = 0 or 8 = λ K L ..... ( 1 ) δK δ l = 2 − λ 2 1 K 2 1 L 2 − 1 = 0 or 4 = λ L K ....... ( 2 ) δK δ l = 80 − K L ..... ( 3 )
Now, (1)/(2) gives -
2 = L/K or L = 2K
Substituting this value in (3) gives -
2 = L K o r L = 2 K 2 =\frac{ L}{K}\\ or\\ L = 2K 2 = K L or L = 2 K
Substituting this value in (3) gives -
2 K 2 = 80 o r K ∗ = 80 2 = 56.5 L ∗ = 160 2 = 113.14 \sqrt{2K^2}=80\\or\\
K^*=\frac{80}{\sqrt{2}}=56.5\\
L^*=\frac{160}{\sqrt{2}}=113.14 2 K 2 = 80 or K ∗ = 2 80 = 56.5 L ∗ = 2 160 = 113.14
c.
Second order conditions are
δ 2 l δ K 2 = − λ 2 ( − 1 2 ) K − 3 2 L 1 2 = λ L 4 K − 3 2 > 0 \frac{\delta ^2 l}{\delta K^2}=-\frac{\lambda}{2}(-\frac{1}{2})K^{\frac{-3}{2}}L^{\frac{1}{2}}\\=\frac{\lambda \sqrt{L}}{4K^{\frac{-3}{2}}}>0 δ K 2 δ 2 l = − 2 λ ( − 2 1 ) K 2 − 3 L 2 1 = 4 K 2 − 3 λ L > 0
δ 2 l δ L 2 = − λ 2 ( − 1 2 ) K 1 2 L − 3 2 = λ K 4 L 3 2 > 0 \frac{\delta ^2 l}{\delta L^2}=-\frac{\lambda}{2}(-\frac{1}{2})K^{\frac{1}{2}}L^{\frac{-3}{2}}\\
=\frac{\lambda \sqrt{K}}{4L^{\frac{3}{2}}}>0 δ L 2 δ 2 l = − 2 λ ( − 2 1 ) K 2 1 L 2 − 3 = 4 L 2 3 λ K > 0
Since second order partial derivatives are positive, hence we can conclude that condition for cost minimisation is satisfied.
Comments