A firm wants to minimize cost when Q=160=2√KL ;r=4 k=2 find K and L
2KL=160L=2l+4K−λ[KL−80]∂L∂l=2−λ2Kl=0λ=4lK∂L∂K=4−λ2Kll=2K22K=160K=56.58L=113.152 \sqrt{KL}=160 \\ L = 2l+4K-λ[\sqrt{KL} -80] \\ \frac{∂L}{∂l} = 2 - \frac{λ}{2} \sqrt{\frac{K}{l}} =0 \\ λ = 4 \sqrt{\frac{l}{K}} \\ \frac{∂L}{∂K} = 4 -\frac{λ}{2} \sqrt{\frac{K}{l}} \\ l = 2K \\ 2 \sqrt{2} K =160 \\ K=56.58 \\ L=113.152KL=160L=2l+4K−λ[KL−80]∂l∂L=2−2λlK=0λ=4Kl∂K∂L=4−2λlKl=2K22K=160K=56.58L=113.15
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments