q=ALαKβ
a. Let the price of the output «q» be p.
Total cost of the firm TC=wL+rK
Profit Π=pq−wL−rK
Π=pALαKβ−wL−rK
Profit is maximized when ∂L∂Π=0and∂K∂Π=0
αpALα−1Kβ−w=0(1)βpALαKβ−1−r=0(2)
Dividing two equations, we get:
βαLK=rwwL=βαKr
Substituting this in C = wL +rK, we get:
βαrK+rK=CrK[βα+β]=CK∗=[α+ββ×rC]L∗=[α+βα×wC]
b. From (1), we get:
αpALα−1Kβ=w
So, the wage rate w is
w=αpALα−1Kβ
c. Total wage paid to labour =wL=αpALαKβ
Total sum paid to capital =rK=βpALαKβ
Share of firms revenue paid to labour =pqwL
=pALαKβαpALαKβ=α
Share of firms revenue paid to capital =pqrK
=pALαKββpALαKβ=β
d. α=0.6, β=0.2, A=1
K∗=0.2+0.60.2×rC=0.25rCL∗=0.2+0.60.6×wC=0.75wC
Comments