Question #231162

1.     Assume that the market demand and the costs of the duopolists are:

P=120-0.4(QA + QB)

TCA=5QA

TCB= 0.2Q2B

Also assume that firm B is the sophisticated leader, Determine:


1.     The reaction curve of A

2.     The reaction curve of B

3.     The profit function of A

4.     Stackelberg equilibrium output level for firm A

5.     Stackelberg equilibrium output level for firm B

6.     The market price.


1
Expert's answer
2021-08-30T14:36:53-0400

Given Information

P=1200.4(QA+QB)TCA=5QATCB=0.2QB2P=120-0.4(Q_A + Q_B)\\ TCA=5Q_A\\ TCB= 0.2Q^2_B


Calculate Marginal Revenue

For Firm A

P=1200.4(QA+QB)P=120-0.4(Q_A + Q_B)


TR=Price×QuantityTR =Price\times Quantity

TR=(1200.4(QA+QB)×QATR=120×QA0.4×QA20.4QAQBTR = (120-0.4(Q_A + Q_B)\times Q_A\\ TR = 120\times Q_A - 0.4\times Q_A^2 - 0.4Q_AQ_B

Now derivate TR with respect to Quantity we get,

MR=1200.8QA0.4QBMR = 120 - 0.8Q_A- 0.4Q_B

 

For Firm B

P=1200.4(QA+QB)P=120-0.4(Q_A + Q_B)

TR=Price×QuantityTR =Price\times Quantity

TR=(1200.4(QA+QB)×QBTR=120×QB0.4×QAQB0.4QB2TR = (120-0.4(Q_A + Q_B)\times Q_B\\ TR = 120\times Q_B - 0.4\times Q_AQ_B- 0.4Q_B^2

Now derivate TR with respect to Quantity we get,

MR=1200.4QA0.8QBMR = 120 - 0.4Q_A- 0.8Q_B


Calculate Marginal cost for both the firms.

For Firm A

TCA=5QATCA=5Q_A

derivate TC with respect to quantity to calculate MC, We get

MC=5TCB=0.2QB2MC = 5\\ TCB= 0.2Q^2_B

derivate TC with respect to quantity to calculate MC, We get

MC=0.4QBMC = 0.4Q_B


1)

For best response function or for reaction function put MR = MC

For Firm A

MRAMCA1200.8QA0.4QB=50.8QA+0.4QB=1150.8QA=1150.4QBQA=143.750.05QBMR_A − MC_A\\ 120 - 0.8Q_A- 0.4Q_B = 5\\ 0.8Q_A+ 0.4Q_B =115\\ 0.8Q_A =115 - 0.4Q_B\\ Q_A=143.75 - 0.05Q_B

Reaction Function for Firm A is QA=143.750.05QBQ_A=143.75 - 0.05Q_B


2)

For Firm B

MRBMCB1200.4QA0.8QB=0.4QB1.2QB=1200.4QAQB=1000.333QAMR_B − MC_B\\ 120 - 0.4Q_A- 0.8Q_B = 0.4Q_B\\ 1.2Q_B = 120 - 0.4Q_A\\ Q_B = 100 - 0.333Q_A

Reaction Function for Firm B is QB=1000.333QAQ_B = 100 - 0.333Q_A


3)

Profit Function of A

Profit=TRATCAProfitforA=120×QA0.4×QA20.4QAQB5QAProfitforA=115QA0.4×QA20.4QAQBProfit = TR_A - TC_A\\ Profit for A = 120\times Q_A - 0.4\times Q_A^2 - 0.4Q_AQ_B - 5Q_A\\ Profit for A = 115Q_A - 0.4\times Q_A^2 - 0.4Q_AQ_B


4)

The Stackelberg leader will choose its output QA to Max its profits, s.t. reaction function of the firm B

πA=120×QA0.4×QA20.4QA×(1000.333QA)5QAπA=115QA0.4×QA20.4QA×(1000.333QA)πA=115QA0.4×QA240QA+0.133QAπA=75.132QA0.4×QA2π_A =120\times Q_A - 0.4\times Q_A^2 - 0.4Q_A\times (100 - 0.333Q_A) - 5Q_A\\ π_A = 115Q_A - 0.4\times Q_A^2 - 0.4Q_A\times (100 - 0.333Q_A)\\ π_A = 115Q_A - 0.4\times Q_A^2 - 40Q_A + 0.133Q_A\\ π_A = 75.132Q_A - 0.4\times Q_A^2

derivate function with respect to QA and put equals to 0, we get

75.1320.8×QA=075.132=0.8×QAQA=93.916575.132 - 0.8\times Q_A = 0\\ 75.132 = 0.8\times Q_A\\ Q_A = 93.9165


5)

Put Value of Q = 93.9165 in Equation QB=1000.333QAQ_B = 100 - 0.333Q_A  we get

QB=1000.333QAQB=1000.333×(93.9165)QB=10031.3023QB=68.697Q_B = 100 - 0.333Q_A\\ Q_B = 100 - 0.333\times (93.9165)\\ Q_B = 100 - 31.3023\\ Q_B = 68.697


6)

market price

P=1200.4(QA+QB)P=120-0.4(Q_A + Q_B)

Put value Q = 93.9165 and QB = 68.697, we get

P=1200.4(93.9165+68.697)P=1200.4(162.6141)P=12065.0456P=54.9543P=120-0.4(93.9165 + 68.697)\\ P=120-0.4(162.6141)\\ P=120 - 65.0456\\ P=54.9543



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS