Question #209420

ii. A multinational refreshments firm has 68 monetary units available to produce the maximum possible number of bottles. Its production function is q(x, y) = 60x + 90y − 2x 2 − 3y 2 where x and y are the required inputs. The inputs prices are px = 2 m.u. and py = 4 m.u. repectively. Given the budget restriction, maximize the production of bottles. By means of the Lagrange multiplier how will the maximum number of bottles produced be modified if the budget is increased in one unit (or if it is decreased)?


1
Expert's answer
2021-06-22T10:19:36-0400

2x+4y=682x+4y68=0..(1)2x+4y=68\\2x+4y-68=0..…(1)

Production function

q(x,y)=60x+90y2x23y2....(2)q(x,y)=60x+90y-2x^2-3y^2....(2)

Applying Lagrange multiplier method

x(60x+90y2x23y2=λx(2x+4y68)=604x=2λ=4λ=602λx=602/λ4=x=30λ2....(3)\frac{∆}{∆x}(60x+90y-2x^2-3y^2=\lambda\frac{∆}{∆x}(2x+4y-68)\\=60-4x=2\lambda\\=4\lambda=60-2\lambda\\x=\frac {60-2/\lambda}{4}\\=x=\frac{30-\lambda}{2}....(3)

Partially differentiating equition 2 and 3 w.r.t y while applying Lagrange multiplier method

y(60x+90y2x23y2=λy(2x+4y68)=906y=λ.....(4)=6y=904λ=904λ6y=452λ3....(4)\frac{∆}{∆y}(60x+90y-2x^2-3y^2=\lambda\frac{∆}{∆y}(2x+4y-68)\\=90-6y=\lambda.....(4)\\=6y=90-4\lambda=\frac{90-4\lambda}{6}\\y=\frac{45-2\lambda}{3}....(4)


Now

2λ+4y=68=230λ2+4(452λ3=68=(30λ)+1808λ3=682\lambda+4y=68\\=2\frac{30-\lambda}{2}+4(\frac{45-2 \lambda}{3}=68\\=(30-\lambda)+\frac{180-8\lambda}{3}=68


903λ+1808λ3=68=2701λ=204=11λ=66λ=6\frac{90-3\lambda+180-8 \lambda}{3}=68\\=270-1\lambda=204\\=11\lambda=66\\\lambda=6


X=30λ2=3062x=12X=\frac{30-\lambda}{2}=\frac{30-6}{2}\\x=12

y=452λ3=452×63=333=y=11y=\frac{45-2\lambda}{3}=\frac{45-2×6}{3}=\frac{33}{3}\\=y=11

qmax(12,11)=60×12+90×112(12)23(11)2=105g(12,11)=60×12+90×11-2(12)^2-3(11)^2\\=105gbottles

If budget is increased in one more unit

2x+4y=692x+4y=69

Substituting the values of x and from equition 3 and 4

=230λ2+4(452λ3)=69=3(30λ)+4(252λ)=69×3λ=5=76=2\frac{30-\lambda}{2}+4(\frac{45-2\lambda}{3})=69\\=3(30-\lambda)+4(25-2\lambda)=69×3\\\lambda=5=76

x=305.732=12.135y=452×5.4733=11.18x=\frac{30-5.73}{2}=12.135\\y=\frac{45-2×5.473}{3}=11.18

q(x,y)=60x+9y2x23y2=60x+9y-2x^2-3y^2

q max(12.135,11.18)=60×12.235+90×11.182(12.135)23(11.18)2=105g(12.135,11.18)=60×12.235+90×11.18-2(12.135)^2-3(11.18)^2\\=105g

qmax(12.135,11.18)=1064.8bottles(12.135,11.18)=1064.8bottles

The firm will produce approximately 6more bottles if budget is increased by 1 monetary unit

Incase thee budget is decreased by one unit

2x+4y=672x+4y=67

Substituting the values of x and y from equition 3 and 4

=230λ2+4(452λ3)=67=3(30λ)+4(452λ)=67×3=2\frac{30-\lambda}{2}+4(\frac{45-2\lambda}{3})=67\\=3(30-\lambda)+4(45-2\lambda)=67×3

=903λ+1808λ=201=11λ+270=201λ=6.27=90-3\lambda+180-8\lambda=201\\=-11\lambda+270=201\\\lambda=6.27

x=306.272=11.865y=4.52×6.273=10.82x=\frac{30-6.27}{2}=11.865\\y=\frac{4.5-2×6.27}{3}=10.82


q(x,y)==60x+9y2x23y2==60x+9y-2x^2-3y^2

=(11.865,10.82)=60×(11.865)+9×10.822(11.865)23(10.82)2=1052.9bottes=(11.865,10.82)=60×(11.865)+9×10.82-2(11.865)^2-3(10.82)^2\\=1052.9 bottes

Therefore approximately 6 bottles less if the budget Is decreases by 1 monetary unit.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS