2x+4y=682x+4y−68=0..…(1)
Production function
q(x,y)=60x+90y−2x2−3y2....(2)
Applying Lagrange multiplier method
∆x∆(60x+90y−2x2−3y2=λ∆x∆(2x+4y−68)=60−4x=2λ=4λ=60−2λx=460−2/λ=x=230−λ....(3)
Partially differentiating equition 2 and 3 w.r.t y while applying Lagrange multiplier method
∆y∆(60x+90y−2x2−3y2=λ∆y∆(2x+4y−68)=90−6y=λ.....(4)=6y=90−4λ=690−4λy=345−2λ....(4)
Now
2λ+4y=68=2230−λ+4(345−2λ=68=(30−λ)+3180−8λ=68
390−3λ+180−8λ=68=270−1λ=204=11λ=66λ=6
X=230−λ=230−6x=12
y=345−2λ=345−2×6=333=y=11
qmax(12,11)=60×12+90×11−2(12)2−3(11)2=105gbottles
If budget is increased in one more unit
2x+4y=69
Substituting the values of x and from equition 3 and 4
=2230−λ+4(345−2λ)=69=3(30−λ)+4(25−2λ)=69×3λ=5=76
x=230−5.73=12.135y=345−2×5.473=11.18
q(x,y)=60x+9y−2x2−3y2
q max(12.135,11.18)=60×12.235+90×11.18−2(12.135)2−3(11.18)2=105g
qmax(12.135,11.18)=1064.8bottles
The firm will produce approximately 6more bottles if budget is increased by 1 monetary unit
Incase thee budget is decreased by one unit
2x+4y=67
Substituting the values of x and y from equition 3 and 4
=2230−λ+4(345−2λ)=67=3(30−λ)+4(45−2λ)=67×3
=90−3λ+180−8λ=201=−11λ+270=201λ=6.27
x=230−6.27=11.865y=34.5−2×6.27=10.82
q(x,y)==60x+9y−2x2−3y2
=(11.865,10.82)=60×(11.865)+9×10.82−2(11.865)2−3(10.82)2=1052.9bottes
Therefore approximately 6 bottles less if the budget Is decreases by 1 monetary unit.
Comments