Give demand P=66−0.1q
Marginal revenue (MR) will have same intercept but twice the slope
MR=66−0.2q
MR=MC
Inverse of MC
MC1=2+0.2q1MC−2=0.2q15MC1−10=q1
MC2=6+0.04q2MC2−6=0.04q225MC−150=q2
Given q=q1+q2 by definition and MC=MC1=MC2 for profit maximization then by substituting the above inverse functions for q1 and q2 we get
q=(5MC−0)+(25MC−150)q=30MC−160q+160=30MC30q+160=MC
MC=MR
30q+160==66−0.2qq+160=1980−6q7q=1820q=260
Substitute
MC=30q+160=30260+160=30420=14
MC1=MC2=MC=14q1=5(14)−10=70−10=60q2=25(14)−150=350−150=200
q1+q2=60+200=260=qp=66−0.1q=66−0.1(206)=66−26=40
q=260p=40
Comments