Derive the MU function from the following TU function: ππ = 200π β 25π 2 + π 3 From this MU function, draw up a table up to the level of Q where MU becomes negative. i.e (Q = 1, 2, etc). Graph these figures
Answer
"Given TU= 200Q-25Q^{2}+Q^{3}"
We have to know that;
"At Q=1,\t\tTU= 200-25+1=176"
"At Q=2,\t\tTU=200\\times2-25\\times4+2^3=308"
"At Q=3,\t\tTU=200\\times3-25\\times3+3^3=402"
"At Q=4,\t\tTU=200\\times4-25\\times4^2+4^3=464"
"At Q=20,\tTU=200\\times20-25\\times20^2+20^3=2000"
When MU becomes negative TU lowers thus decreasing the level of Q.
"So MU_{n}=TU_{n}-TU_{n-1}"
"Therefore the marginal function will be ; MU=\\frac{2TU}{2Q}=200-50Q+3Q^2" "at Q=1, \t\tMU=176-0=176"
"at Q=2,\t\tMU=308-176=132"
"at Q=3, \t\tMU=402-308=94"
"at Q=4,\t\tMU=464-402=62"
So graph of MU:
Comments
Leave a comment