Answer to Question #183904 in Microeconomics for Fatima Motlak

Question #183904

An agent has utility u(x1, x2) = (x −1 1 + x −1 2 ) −1 for goods x1 and x2. The prices of the goods are p1 and p2. The agent has income m. a) Show preferences are convex. You can do this graphically or by showing that MRS is decreasing in x1. b) Solve for the agent’s optimal choice of (x1, x2). c) Show the agent’s indirect utility function is given by: V = ( m (p 1/2 1 +p 1/2 2 ) 2 



1
Expert's answer
2021-04-22T19:01:03-0400

Given:

An agent has a utility of:

"U(x_1,x_2)=(x_1^{-1}+x_2^{-1})^{-1}"

The prices of goods are p1 and p2

agent income = m

Agent's indirect utility function:

"V=(\\frac{m}{p_1^\\frac{1}{2}+p_2^\\frac{1}{2}})^2"

To find:

a)

"MRS=\\frac{d_x\/d_{x1}}{d_x\/d_{x2}}=x_1-2(x_1-1+x_2-1)-2d_ud_{x2}"

"=-(x_1-1+x_2-1)-2\\times(-1)(x_2)-2"

"\\frac{d_x}{d_{x1}}=-(x_1^{-1}+x_2^{-1})^{-2}\\times(-1)(x_1)^{-1}\\frac{d_x}{d_u}"

"d_ud_{x2}=(x_2)-2(x_1-1+x_2-1)-2"

Now MRS will be:


"MRS=\\frac{x_1^{-2}(x_1^{-1}+x_2^{-1})^{-2}}{x_2^{-2}(x_1^{-1}+x_2^{-1})^{-2}}"


"MRS=(\\frac{x_2}{x_1})^2"


"\\frac{\\delta MRS}{\\delta x_1} = -2 \\times \\frac{(x_1)^2}{(x_1)^3}<0"

b)

  • The agent’s optimal choice of (x1, x2).

"u = (x_1^{-1} +x_2^{-1}B.C=x_1p_1=x_2p_2=m"

"L=U+(B.C)"

"L=(x_1^{-1}+x_2^{-1}+(m-x_1p_1-x_2p_2)"

Now,

"\\frac{\\delta L}{\\delta x_1}=-1(x_1^{-1}+x_2^{-1})^{-2} \\times (-1)(x_1)^{-2}-p_1"


"\\frac{\\delta L}{\\delta x_1}=(x_1)^{-2}(x_1^{-1}+x_2^{-1})^{-2}=p_1\\frac{\\delta L}{\\delta _x}"

optimal choice will be

"m-x_1p_1-p_2x_2=0"

"=p_1x_1+p_2\\times \\sqrt{\\frac{p_1}{p_2}}\\times x_1=m"

"x_1=\\frac{m}{p_1+\\sqrt{p_1p_2}}"

"x_2=\\frac{m}{\\sqrt{}p_1p_2+p_2}"


c)

Agent's indirect

"V=(x_1^{-1}+x_2^{-1})^{-1}"


"V=(\\frac{m}{(\\sqrt{p_1+\\sqrt{}p_2})})"






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS