Question #194987

Suppose the monopolist faces the market demand function given by Q=144/p2

The AVC of the firm is given as AVC = Q ½ and the firm has a fixed cost of $ 5

a) determine equilibrium P&Q

b) determine the maximum profit


1
Expert's answer
2021-05-19T19:16:48-0400

To identify the profit, there is a need to set the equation: MR = MC

Given:

Q=144P2, P2=144QQ = \frac{144}{P^2}, \space P^2 = \frac{144}{Q}


Or P=(144Q)12...........(i)P=(\frac{144}{Q})^{\frac{1}{2}} ...........(i)


Therefore, P=(12Q)P=(\frac{12}{\sqrt{Q}})


Now TR = Price and Quantity sold

TR = PQ

=12Q×Q=\frac{12}{\sqrt Q}\times Q


=12Q..........................(ii)=12\sqrt Q..........................(ii)



Now, MR=

Δ(TR)ΔQ\frac{\Delta(TR)}{\Delta Q} [MR derivative of TRΔQ\frac{TR}{\Delta Q} ]


=Δ12QΔQ=\frac{\Delta 12\sqrt Q}{\Delta Q}


=12(12Q)=6ΔQ.........................(iii)=\frac{1}{2}(12Q)\\=\frac{6}{\Delta Q}.........................(iii)


Given the total fixed cost of $5


Average variable cost (AVC)=Q12=Q=Q^{\frac{1}{2}}=\sqrt Q

TC = TFC + TVC

TVC = (AVC)(Q)

Therefore, total cost  TC=5+(Q)(Q)TC=5+(\sqrt Q)(Q)

=5+Q12+1=5+Q32.......................(iv)=5+Q^{\frac{1}{2}+1}\\=5+Q^{\frac{3}{2}}.......................(iv)

with TC, Now we can compute MC by taking the derivation within respect to Q

Now MR = MC,

Therefore to find the profit-maximizing level of output

6Q=32Qor Q=123\frac{6}{\sqrt Q}=\frac{3}{2}\sqrt Q\\or\space Q=\frac{12}{3}


Q = 4units

by putting Q = 4

P=12QP=\frac{12}{\sqrt Q}


P=124P=\frac{12}{\sqrt 4}


P=122P=\frac{12}{2}


P = $6

Then profit is:

Profit = PQ - TC

=(6)(4)[5+(4)32]=(6)(4) - [5 + (4)^{3}{2}]

=2413=$11=24-13\\ = \$11



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS