1)
"4Cl_2 + PH_3 \\rightarrow PCl_5 + 3HCl""n = \\frac{m}{M}"
"n(PCl_5) = \\frac{15 g}{208.22 \\frac{g}{mo}} = 0.072 mol"
According to equation mole ratio "n(Cl_2):n(PCl_5) = 4:1", then "n(Cl_2) = n(PCl_5) \\times 4 = 0.072 mol \\times 4 = 0.288 mol"
"m(Cl_2) = n(Cl_2)\\times M(Cl_2) = 0.288 mol \\times 70.9 \\frac{g}{mol} = 20.4 g = 0.0204 kg"
2)
"4Cl_2 + PH_3 \\rightarrow PCl_5 + 3HCl""n(Cl_2) = \\frac{m}{M} = \\frac {15 g}{70.9 \\frac{g}{mol}}= 0.212 mol"
"n(PH_3) = \\frac{m}{M} = \\frac{10 g}{34\\frac{g}{mo}} = 0.294 mol"
Compare ratios "\\frac{n(Cl_2)}{4} = \\frac{0.212 mol}{4} = 0.053 mol" and "\\frac{n(PH_3)}{1} = 0.294 mol"
"0.053 mol < 0.294 mol" , then "Cl_2" is a limiting rectant.
Use "n(Cl_2) = 0.212 mol" to determine "n(PCl_5)"
According to equation mole ratio "n(Cl_2): n(PCl_5) = 4:1" , then "n(PCl_5) = \\frac{n(Cl_2)}{4} = \\frac{0.212 mol}{4} = 0.053 mol"
"m_{theor}(PCl_5) = n\\times M = 0.053 mol \\times 208.22 \\frac{g}{mol} = 11.04 g"
percentage yield % "= \\frac{5.5 g}{11.04 g} \\times 100\\% = 49.8 \\%"
Comments
Leave a comment