$$\ce{2C_4H_{10}(g) +13O_2(g) -> 8 CO_2(g) + 10H_2O(l)}$$
$65cm^3$ of butane is burnt in $65cm^3$ of oxygen. Find the volume of carbon dioxide produced.\
Solution\
Assume\
i) $O_2$ and $CO_2$ are ideal gas at STP condition $22.7dm^3/mol$\
ii) $C_4H_{10}$ is limiting reactant with lowest coefficient in the equation while $O_2$ is the excess reactant.
$n_{O_2 (real)}=0.065/22.7=2.8634\times10^-3$ mol $O_2$(real)
$$From\qquad equation:$$$$\ce{2C_4H_{10}(g) :13O_2(g) }$$
$$Real:$$$$\ce{X C_4H_{10}(g) :(2.8634\times{10^-3}) O_2(g) }$$
Ratio: $\frac{2}{13}=\frac{X}{2.8634\times{10^-3}}$\
$X=\frac{2}{13}\times(2.8634\times{10^-3})=4.4052\times10^-4$ mol $C_4H_{10}(real)$ which is the limiting reactant.
$$From\qquad equation:$$$$\ce{2C_4H_{10}(g) :8CO_2(g) }$$
$$Real:$$$$\ce{4.4052\times10^{-4} C_4H_{10}(g) :Y CO_2(g) }$$
$Y=\frac{8}{2}\times(4.4052\times10^{-4})=1.7621\times10^-3$ mol $CO_2(real)$
$V_{CO_2}(real)=1.7621\times10^-3$ mol $\times 22.7dm^3/mol=0.039999dm^3=0.04dm^3=40cm^3$
Correct?
The answer to your question is provided in the image:
Comments
Leave a comment