"E^o_{cell} = E^o_{reduction} (H^+\/H_2 ) - E^o_{reduction} (Zn^{2+} \/Zn)"
"= 0.00 V - (-0.76 V) \\\\\n\n= 0.76 V \\\\\n\nE_{cell} = 0.542 \\\\"
the overall equation is
Zn(s) + 2H+(aq) → Zn2+(aq) + H2(g)
so n = 2, and
So nernst equation :
"0.542 = 0.76 - (\\frac{0.059}{2})logQ \\\\\n\n-0.218 = -0.0295logQ \\\\\n\n7.3898 = log Q \\\\\n\nQ= 10^7.3898 = 24535787.41 = 2.45 \\times 10^7"
where Q = ([Zn+2 ] [H2] )/[H+]2
"2.45 \\times 10^7 = \\frac{0.01 \\times 0.1}{[H^+]^2}"
Now we solve for [H+]
"[H+] = \\sqrt{ 0.408 \\times 10^{-10}}= 0.638 \\times 10^{-5} \\\\\n\n= 6.38 \\times 10^{-6} \\;M"
Comments
Leave a comment