The diagram of the cell will be starting with Cu/Cu2+ because that is the negative pole or anode, while the oxidation occurs to the half that involves Ag/Ag+:
"Cu|Cu^{2+} \\, (3.5 \\times 10^{-4}\\, M)||Ag^+\\,(5\\times 10^{-2}M)|Ag"
Then, the half reactions that occur at each side of the galvanic cell are:
Anode/ reduction: "Cu^{2+}_{(aq)}+ 2 e^- \\to Cu_{(s)}"
Cathode / oxidation: "Ag_{(s)} \\to Ag^{+}_{(aq)}+e^-"
The overall reaction is: "Cu^{2+}_{(aq)}+ 2 Ag_{(s)} \\to 2 Ag^{+}_{(aq)}+Cu_{(s)}"
The electrode potential of the cell can be calculated with the Nernst equation and the standard reduction potentials:
"\\Delta E = \\Delta E^{\\circ}-\\frac{0.06}{2}\\log{\\cfrac {[Cu^{2+}]}{[Ag^{+}]^2}}\n\\\\ \\Delta E^{\\circ} =E_{Cu^{2+}\/Cu}^{\\circ}-E_{Ag^{+}\/Ag}^{\\circ}=(0.80-0.34)V\n\\\\ \\Delta E^{\\circ} =0.46\\,V\n\\\\ \\therefore \\Delta E = 0.34\\,V- (0.03 \\,V)\\log {\\frac {3.5 \\times 10^{-4}\\, M}{{[5\\times 10^{-2}M]}^2 }} = 0.3989\\,V"
The Gibbs and the Standard Gibbs Free Energy can be found with the relation "\\Delta G^{(\\circ)}=-nF \\Delta E^{(\\circ)}":
"\\Delta G^{\\circ}=-nF \\Delta E^{\\circ}=-(96485 \\,C\/mol)(2)(0.46\\,V)=-88766.2\\frac{J}{mol}\n\\\\ \\text{On the other hand, }\n\\\\\\Delta G=-nF \\Delta E=-(96485 \\,C\/mol)(2)(0.3989\\,V)=-76975.733\\frac{J}{mol}"
In conclusion,
A) Gibbs Free – Energy: "\\Delta G=-76975.733\\frac{J}{mol}"
B) Standard Gibbs Free – Energy: "\\Delta G\u00b0=-88766.2\\frac{J}{mol}"
C) Electrode potential of the cell: "\\Delta E = 0.3989\\,V"
Reference
Comments
Leave a comment