We solve according to the Clapeyron-Clausius equation
"ln(\\frac{P1}{P2})=\\frac{\\Delta Hvap}{R}(\\frac{1}{T2}-\\frac{1}{T1})"
P1=100mmHg=0.131579 atm
R=8.314 J/(K×mol)
T2=298.15 K
T1=294.35 K
"ln(\\frac{0.131579}{P2})=\\frac{38 000}{8.314}(\\frac{1}{298.15}-\\frac{1}{294.35})"
"ln(\\frac{0.131579}{P2})=-0.197905708"
"\\frac{0.131579}{P2}=e^{-0.197905708}"
"\\frac{0.131579}{P2}=0.820447211"
P2=0.16037473 atm or
1 the physical atmosphere is equal to 760.002211 millimeters of mercury
0.16037473 atm=121.885149 mmHg
Comments
Leave a comment