. Consider the Schrödinger equation for a particle in the presence of the potential of the form 𝑉(𝑥) = 𝑈(𝑥) + 𝑖𝑊(𝑥) where 𝑈 and 𝑊 are real functions of 𝑥. What form does the conservation equation take?
let us consider the Schrödinger equation with potential "\ud835\udc49(\ud835\udc65) = \ud835\udc48(\ud835\udc65) + \ud835\udc56\ud835\udc4a(\ud835\udc65)":
The conjugate equation
"-i\\hbar \\frac{\\partial \\psi*}{\\partial t}=-\\frac{\\hbar^2}{2m}\\nabla^2\\psi^*+( \ud835\udc48(\ud835\udc65) - \ud835\udc56\ud835\udc4a(\ud835\udc65))\\psi^*\\quad (2)"After multiplying Eqn 1 by "\\psi^*", Eqn 2 by "\\psi" and subtracting, we get
"i\\hbar\\left( \\frac{\\partial \\psi}{\\partial t}\\psi^*+\\frac{\\partial \\psi^*}{\\partial t}\\psi\\right)=""-\\frac{\\hbar^2}{2m}\\left(\\psi^*\\nabla^2\\psi-\\psi\\nabla^2\\psi^*\\right)+2iW(x)\\psi\\psi^*"
or
"\\frac{\\partial \\rho}{\\partial t}+\\nabla {\\bf j}-\\gamma\\rho=0"Here
"\\rho=\\psi\\psi^*""{\\bf j}=\\frac{\\hbar}{2mi}\\left(\\psi^*\\nabla\\psi-\\psi\\nabla\\psi^*\\right)"
"\\gamma=2W(x)\/\\hbar"
Comments
Leave a comment