Solve the Schrödinger equation for a particle in a box with sides at 𝑥 = −𝐿 and 𝑥 = 𝐿. Determine the eigenvalues and the normalized eigenfunctions.
The Schrödinger equation for wave function of the system is as follows
"-\\hbar^2\/2m\\psi''(x)+V(x)\\psi(x)=E\\psi(x)"For particle inside a box "V(x)=0", so
"-\\hbar^2\/2m\\psi''(x)=E\\psi(x)"Solution
"\\psi(x)=A\\cos(kx)+B\\sin(kx), \\quad k=\\sqrt{2mE}\/\\hbar"The boundary conditions give
"\\psi(L)=A\\cos(kL)+B\\sin(kL)=0,\\\\\n\\psi(-L)=A\\cos(kL)-B\\sin(kL)=0."So
"A=0,\\:\\quad kL=\\pi n,\\quad E_n=\\frac{\\hbar^2\\pi^2n^2}{2mL^2}""\\psi_n(x)=B\\sin(\\pi nx\/L)"
Normalization condition gives
"\\int_{-L}^L\\psi^2(x)dx=1"So
"B^2\\int_{-L}^L\\sin^2(\\pi n x\/L)dx=1,\\quad B=1\/\\sqrt{L}"Finally
"\\psi_n(x)=1\/\\sqrt{L}\\sin(\\pi nx\/L)"
Comments
Leave a comment