Question #236634

Solve the Schrödinger equation for a particle in a box with sides at 𝑥 = −𝐿 and 𝑥 = 𝐿. Determine the eigenvalues and the normalized eigenfunctions. 


1
Expert's answer
2021-09-15T11:39:29-0400

The Schrödinger equation for wave function of the system is as follows

2/2mψ(x)+V(x)ψ(x)=Eψ(x)-\hbar^2/2m\psi''(x)+V(x)\psi(x)=E\psi(x)

For particle inside a box V(x)=0V(x)=0, so

2/2mψ(x)=Eψ(x)-\hbar^2/2m\psi''(x)=E\psi(x)

Solution

ψ(x)=Acos(kx)+Bsin(kx),k=2mE/\psi(x)=A\cos(kx)+B\sin(kx), \quad k=\sqrt{2mE}/\hbar

The boundary conditions give

ψ(L)=Acos(kL)+Bsin(kL)=0,ψ(L)=Acos(kL)Bsin(kL)=0.\psi(L)=A\cos(kL)+B\sin(kL)=0,\\ \psi(-L)=A\cos(kL)-B\sin(kL)=0.

So

A=0,kL=πn,En=2π2n22mL2A=0,\:\quad kL=\pi n,\quad E_n=\frac{\hbar^2\pi^2n^2}{2mL^2}

ψn(x)=Bsin(πnx/L)\psi_n(x)=B\sin(\pi nx/L)

Normalization condition gives

LLψ2(x)dx=1\int_{-L}^L\psi^2(x)dx=1

So

B2LLsin2(πnx/L)dx=1,B=1/LB^2\int_{-L}^L\sin^2(\pi n x/L)dx=1,\quad B=1/\sqrt{L}

Finally

ψn(x)=1/Lsin(πnx/L)\psi_n(x)=1/\sqrt{L}\sin(\pi nx/L)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS