The Schrödinger equation for wave function of the system is as follows
− ℏ 2 / 2 m ψ ′ ′ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) -\hbar^2/2m\psi''(x)+V(x)\psi(x)=E\psi(x) − ℏ 2 /2 m ψ ′′ ( x ) + V ( x ) ψ ( x ) = E ψ ( x ) For particle inside a box V ( x ) = 0 V(x)=0 V ( x ) = 0 , so
− ℏ 2 / 2 m ψ ′ ′ ( x ) = E ψ ( x ) -\hbar^2/2m\psi''(x)=E\psi(x) − ℏ 2 /2 m ψ ′′ ( x ) = E ψ ( x ) Solution
ψ ( x ) = A cos ( k x ) + B sin ( k x ) , k = 2 m E / ℏ \psi(x)=A\cos(kx)+B\sin(kx), \quad k=\sqrt{2mE}/\hbar ψ ( x ) = A cos ( k x ) + B sin ( k x ) , k = 2 m E /ℏ The boundary conditions give
ψ ( L ) = A cos ( k L ) + B sin ( k L ) = 0 , ψ ( − L ) = A cos ( k L ) − B sin ( k L ) = 0. \psi(L)=A\cos(kL)+B\sin(kL)=0,\\
\psi(-L)=A\cos(kL)-B\sin(kL)=0. ψ ( L ) = A cos ( k L ) + B sin ( k L ) = 0 , ψ ( − L ) = A cos ( k L ) − B sin ( k L ) = 0. So
A = 0 , k L = π n , E n = ℏ 2 π 2 n 2 2 m L 2 A=0,\:\quad kL=\pi n,\quad E_n=\frac{\hbar^2\pi^2n^2}{2mL^2} A = 0 , k L = πn , E n = 2 m L 2 ℏ 2 π 2 n 2
ψ n ( x ) = B sin ( π n x / L ) \psi_n(x)=B\sin(\pi nx/L) ψ n ( x ) = B sin ( πn x / L ) Normalization condition gives
∫ − L L ψ 2 ( x ) d x = 1 \int_{-L}^L\psi^2(x)dx=1 ∫ − L L ψ 2 ( x ) d x = 1 So
B 2 ∫ − L L sin 2 ( π n x / L ) d x = 1 , B = 1 / L B^2\int_{-L}^L\sin^2(\pi n x/L)dx=1,\quad B=1/\sqrt{L} B 2 ∫ − L L sin 2 ( πn x / L ) d x = 1 , B = 1/ L Finally
ψ n ( x ) = 1 / L sin ( π n x / L ) \psi_n(x)=1/\sqrt{L}\sin(\pi nx/L) ψ n ( x ) = 1/ L sin ( πn x / L )
Comments