Question #236631

Consider the function 𝜓(𝜃) of the angular variable 𝜃, restricted to the interval −𝜋 ≤ 𝜃 ≤ 𝜋. If the wave functions satisfy the condition 𝜓(𝜋) = 𝜓(−𝜋), show that the operator 𝐿 = ℏ / 𝑖. 𝑑 / 𝑑𝜃 has a real expectation value.


1
Expert's answer
2021-09-14T09:36:08-0400

The equation for eigenfunctions is given by

Lψ=λψL\psi=\lambda\psi

iddθψ=λψ\frac{\hbar}{i}\frac{d}{d\theta}\psi=\lambda\psi

ψ(θ)=Cei/λθ\psi(\theta)=Ce^{i/\hbar\lambda\theta}

ψ(π)=Cei/λπ,ψ(π)=Cei/λπ\psi(\pi)=Ce^{i/\hbar\lambda \pi},\quad \psi(-\pi)=Ce^{-i/\hbar\lambda \pi}

ei/λπ=ei/λπe^{i/\hbar\lambda \pi}=e^{-i/\hbar\lambda \pi}

e2i/λπ=1e^{2i/\hbar\lambda \pi}=1

2/λπ=2πn2/\hbar\lambda \pi=2\pi n

The expectation values of operator

λ=n=real\lambda=\hbar n=\rm real


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS