Consider the function π(π) of the angular variable π, restricted to the interval βπ β€ π β€ π. If the wave functions satisfy the condition π(π) = π(βπ), show that the operator πΏ = β / π. π / ππ has a real expectation value.
The equation for eigenfunctions is given by
"L\\psi=\\lambda\\psi""\\frac{\\hbar}{i}\\frac{d}{d\\theta}\\psi=\\lambda\\psi"
"\\psi(\\theta)=Ce^{i\/\\hbar\\lambda\\theta}"
"\\psi(\\pi)=Ce^{i\/\\hbar\\lambda \\pi},\\quad \\psi(-\\pi)=Ce^{-i\/\\hbar\\lambda \\pi}"
"e^{i\/\\hbar\\lambda \\pi}=e^{-i\/\\hbar\\lambda \\pi}"
"e^{2i\/\\hbar\\lambda \\pi}=1"
"2\/\\hbar\\lambda \\pi=2\\pi n"
The expectation values of operator
"\\lambda=\\hbar n=\\rm real"
Comments
Leave a comment