At what angle will 510-nm light produce a second-order maximum when falling on a grating whose slits are 1.00 x 10-3 cm apart?
λ=510 nm=510×10−9 m,m=2,d=1×10−3 cm=10−5 m\lambda=510\ nm=510\times10^{-9}\ m, \\m=2, \\d=1\times10^{-3}\ cm=10^{-5}\ mλ=510 nm=510×10−9 m,m=2,d=1×10−3 cm=10−5 m
We know that,
dsinθ=mλ∴θ=sin−1(mλd)⇒θ=sin−1(2×510×10−910−5)⇒θ=sin−1(0.102)⇒θ=5.85°d\sin\theta=m\lambda \\ \therefore \theta=\sin^{-1}(\dfrac{m\lambda}{d}) \\ \Rightarrow \theta=\sin^{-1}(\dfrac{2\times510\times10^{-9}}{10^{-5}}) \\ \Rightarrow \theta=\sin^{-1}(0.102) \\ \Rightarrow \theta=5.85\degreedsinθ=mλ∴θ=sin−1(dmλ)⇒θ=sin−1(10−52×510×10−9)⇒θ=sin−1(0.102)⇒θ=5.85°
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment