If a diffraction grating produces a third-order bright spot for red light (of wavelength 700 nm) at 65.0° from the central maximum, at what angle will the second-order bright spot be for violet light (of wavelength 400 nm)?
"\\theta _3=65.0\u00b0"
"\\lambda_1 =700nm =700\u00d710^{-9}m"
"\\lambda _2=400nm=400\u00d710^{-9}m"
We know that angular position of a bright band is given by
"Sin\\theta_m=\\frac{m\\lambda}{d}"
For the third-order bright band,in the first wavelength "\\lambda _1" whereas "m" "=+-3"
"Sin\\theta _3=\\frac{3\\lambda_1}{d}"
"d=\\frac{3\\lambda_1}{Sin\\theta_3}"
"d=\\frac{3\u00d7700\u00d710^{-9}}{Sin65.0\u00b0}"
"d=2.32\u00d710^{-6}m"
"Sin\\theta_2=\\frac{2\\lambda_2}{d}"
Hence
"\\theta_2=Sin^{-1}[\\frac{2\\lambda2}{d}]"
"\\theta_2=Sin^{-1}[\\frac{2\u00d7400\u00d710^{-9}}{2.32\u00d710^{-6}}]"
"\\theta_2=20.2\u00b0"
Comments
Leave a comment