Monochromatic light from a distant source is incident on a slit 0.750 mm wide. On a screen 2.00 m away, the distance from the central maximum of the diffraction pattern to the first minimum is measured to be 1.35 mm. Calculate the wavelength of the light.
Conditions for the position of the minima is,
"\\tan \\theta=\\frac{y}{D}"
Rearrange the above equations to get angle of diffraction,
"\\theta=\\tan ^{-1}\\left(\\frac{y}{D}\\right)"
Substitute "1.35 \\mathrm{~mm} for\\ \\mathrm{y} and\\ 2.00 \\mathrm{~m}\\ for\\ D."
"\\begin{aligned}\n\n\\theta &=\\tan ^{-1}\\left(\\frac{(1.35 \\mathrm{~mm})\\left(\\frac{10^{-3} \\mathrm{~m}}{1 \\mathrm{~mm}}\\right)}{2.00 \\mathrm{~m}}\\right) \\\\\n\n&=0.038674^{\\circ} \\\\\n\n& \\approx 0.0387^{\\circ}\n\n\\end{aligned}"
Expression for the wavelength of the light is,
"\\lambda=\\frac{d \\sin \\theta}{n}"
Substitute d for "0.750 \\mathrm{~mm}, 0.0387^{\\circ} for\\ \\theta, and\\ 1 for\\ n" .
"\\begin{aligned}\n\n\\lambda &=\\frac{(0.750 \\mathrm{~mm})\\left(\\frac{10^{-3} \\mathrm{~m}}{1 \\mathrm{~mm}}\\right) \\sin \\left(0.0387^{\\circ}\\right)}{1} \\\\\n\n&=506.58 \\times 10^{-9} \\mathrm{~m} \\\\\n\n& \\approx 507 \\mathrm{~nm}\n\n\\end{aligned}"
The wavelength of the light is "507 \\mathrm{~nm}."
Comments
Leave a comment