Three ice skaters meet at the center of a rink and each stands at rest facing the center, within arm's reach of the other two. On a signal, each skater pushes himself away from the other two across the frictionless ice. After the push, skater A with mass mA = 70.0 kg
 moves in the negative y-direction at 2.00 m/s and skater B with mass mB = 85.0 kg
 moves in the negative x-direction at 3.50 m/s. Find the x- and y-components of the 75.0 kg skater C's velocity (in m/s) after the push.
vCx=__Â m/s
vCy=___Â m/s
Three ice skaters meet at the center of a rink and we can consider that they are at rest before they start to move thus "v_{\\text{skater A}_i} = v_{\\text{skater B}_i} = v_{\\text{skater C}_i} = 0\\,m\/s", in consequence "\\vec{p}_{\\text{skater C}_i}=\\vec{p}_{\\text{skater B}_i}=\\vec{p}_{\\text{skater A}_i}=\\vec{p_{i}}=\\vec{0}" .
Since momentum is conserved, this means that "\\vec{p_i}=\\vec{p_f}=\\vec{p}_{\\text{skater A}_f}+\\vec{p}_{\\text{skater B}_f}+\\vec{p}_{\\text{skater C}_f}=\\vec{0}". Now, we need to define the final conditions for the three skaters considering that A and B are moving along the negative y and x-axis, respectively:
"\\vec{v}_{\\text{skater A}_f} =[0\\frac{m}s,-2\\frac{m}s]; m_{\\text{A}} =70.0\\,kg\n\\\\ \\vec{v}_{\\text{skater B}_f} =[-3.5\\frac{m}s,0\\frac{m}s]; m_{\\text{B}} =85.0\\,kg\n\\\\ \\vec{v}_{\\text{skater C}_f} =[v_{c_x},v_{c_y}]; m_{\\text{C}} =75.0\\,kg"
Considering this we substitute for "\\vec{p_f}= \\vec{0}" with the provided information when they started to move:
"\\\\ m_{A}\\vec{v}_{\\text{skater A}_f} +m_{B}\\vec{v}_{\\text{skater B}_f} + m_{C}\\vec{v}_{\\text{skater C}_f} =\\vec{0}\n\\\\ (70\\,kg) [0\\frac{m}s,-2\\frac{m}s]+(85\\,kg)[-3.5\\frac{m}s,0\\frac{m}s]+ (75\\,kg)[v_{c_x},v_{c_y}] =\\vec{0}\n\\\\ [0,-140](\\frac{kgm}s)+[-297.5,0](\\frac{kgm}s)+ (75\\,kg)[v_{c_x},v_{c_y}] =\\vec{0}"
Following we can find "[v_{c_x},v_{c_y}]" as
"[v_{c_x},v_{c_y}]= -\\frac{(\\frac{kgm}s)}{(75\\,kg)}( [0,-140]+[-297.5,0])\n\\\\ [v_{c_x},v_{c_y}]= -\\frac{1}{(75)} [-297.5,-140](\\frac{m}s)\n\\\\ [v_{c_x},v_{c_y}]= [+\\frac{119}{30},+\\frac{28}{15}](\\frac{m}s)\\approxeq[+3.966,+1.866](\\frac{m}s)"
Reference:
Comments
Leave a comment