The front 1.20 m of a 1,250-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision.
(a) If a car traveling 26.0 m/s stops uniformly in 1.20 m, how long does the collision last?
___Â s
(b) What is the magnitude of the average force on the car?
 ___N
(c) What is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity.
 ___ g
Solution.
"L=1.20m;"
"m=1250kg;"
"v_0=26.0m\/s;"
"v=0m\/s;"
a) "L=\\dfrac{v_0+v}{2}t\\implies t=\\dfrac{2L}{v+v_0};"
"t=\\dfrac{2\\sdot1.20}{26.0}=0.92s;"
b) "F=ma;"
"a=\\dfrac{v-v_0}{t}" ;
"a=\\dfrac{0-26.0}{0.92}=-28.26 m\/s^2;"
"F=1250\\sdot28.26=35326N;"
c)"g=9.8m\/s^2;\na=2.88g;"
Answer: "a) t=0.92s;"
b)"F=35326N;"
c)"a=2.88g."
Comments
Leave a comment