A soccer player takes a corner kick, lofting a stationary ball 30.0° above the horizon at 23.0 m/s. If the soccer ball has a mass of 0.425 kg and the player's foot is in contact with it for 3.90 ✕ 10−2 s, find the x- and y-components of the soccer ball's change in momentum and the magnitude of the average force exerted by the player's foot on the ball.
(a)the x- and y-components of the soccer ball's change in momentum (in kg · m/s)
Δpx= ___kg · m/s
Δpy= ___kg · m/s
(b) the magnitude of the average force exerted by the player's foot on the ball (in N)
 __N
(a)the x- and y-components of the soccer ball's change in momentum (in kg · m/s)
The initial velocity of the ball will be V1 = 0 m/s because it is at rest. Then, to find the final velocity for each component we use the trigonometric relations:
"v_1=v_{1,y}=v_{1,x}=0\\,m\/s\n\\\\ v_2=23.0\\, m\/s\n\\\\ v_{2,x}=v_2 \\cos{\\theta}\n\\\\ v_{2,x}=(23.0\\, m\/s)\\cos{(30\u00b0)}=19.9\\, m\/s\n\\\\ v_{2,y}=v_2 \\sin{\\theta}\n\\\\ v_{2,x}=(23.0\\, m\/s)\\sin{(30\u00b0)}=11.5\\, m\/s"
Then we can calculate the change of momentum for the x-axis:
"\\Delta p_{x}=m(v_{2,x}-v_{1,x})\n\\\\ \\Delta p_{x}=(0.425\\,kg)(19.9-0)\\, m\/s\n\\\\ \\Delta p_{x}=8.4575 \\,{kg}\\cdot {m\/s}"
Following for the y-axis we find:
"\\Delta p_{y}=m(v_{2,y}-v_{1,y})\n\\\\ \\Delta p_{y}=(0.425\\,kg)(11.5-0)\\, m\/s\n\\\\ \\Delta p_{y}=4.8875 \\,{kg}\\cdot {m\/s}"
(b) Then, for the second part the magnitude of the average force exerted by the player's foot on the ball (in N) is found with the impulse-force relation:
"\\vec{J}=\\sum{\\vec{F}}\\cdot \\Delta t=\\vec{p_2}-\\vec{p_1}\n\\\\ \\sum{\\vec{F}}\\cdot \\Delta t=m(\\vec{v_2}-\\vec{v_1})\n\\\\ \\implies \\sum{{\\vec{\\mid F \\mid}}}=\\cfrac{m(\\vec{\\mid v_2 }-\\vec{v_1\\mid})}{\\Delta t}"
We use the definitions for v1 and v2 to find the vector that describes the change in velocity and then we can find the magnitude of such change:
"\\mid({v_{2,x}},{v_{2,y}}) - ({v_{1,x}},{v_{1,y}}) \\mid= \\mid(19.9,11.5) -(0,0)\\mid\\,m\/s\n\\\\ \\implies \\mid(19.9,11.5)\\mid\\,m\/s=(\\sqrt{(19.9)^2+(11.5)})\\, m\/s \\approxeq 23\\,m\/s\n\\\\ \\sum{{\\vec{\\mid F \\mid}}}=\\cfrac{(0.425\\,kg)(23\\,m\/s)}{3.90\\times 10^{-2}s}\n\\\\ \\implies \\sum{{\\vec{\\mid F \\mid}}}=250.6\\,N"
Comments
Leave a comment