A hollow spherical shell carries charge density ρ = k/r2 in the region a < r < b (see Figure). Find the electric field in the three regions : (I) r < a (II) a < r < b, (III) r > b. Plot the magnitude of E~ as a function of r.
Gives "\\rho=\\frac{k}{r^2}"
r<a
"Q_r=0\\rightarrow(1)"
r>b
"Q_r=Q"
"Q_r=\\int _{s_r}\\rho d\\tau"
"Q_r=4 \\pi\\int_{a}^{r}\\rho (s)s^2 ds"
"Q_r=4 \\pi\\int_{a}^{r}\\frac{k}{s^2}s^2 ds"
"Q_r=4\\pi k(r-a)\\rightarrow(2)"
"a<r<b"
Similarly
"Q_r=4 \\pi\\int_{a}^{b}\\frac{k}{s^2}s^2 ds"
"Q_r=4\\pi k(b-a)\\rightarrow(3)"
Gauss law
"E_r=\\frac{Q_r}{4\\pi\\epsilon_0 r^2}\\rightarrow(4)"
Put "Q_r" Value
equation (1) and equation (4)
"r<a"
"E_r=\\frac{0}{4\\pi\\epsilon_0 r^2}=0"
equation (2) and (4)
"a<r<b"
"E_r=\\frac{4\\pi k(r-a)}{4\\pi\\epsilon_0 r^2}"
"E_r=\\frac{k}{\\epsilon_0}(\\frac{r-a}{r^2}),"
Equation (3) and (4)
"r>b"
"E_r=\\frac{Q_r}{4\\pi\\epsilon_0 r^2}"
"E_r=\\frac{4\\pi k(b-a)}{4\\pi\\epsilon_0 r^2}"
"E_r=\\frac{k}{\\epsilon_0}(\\frac{b-a}{r^2})"
Comments
Leave a comment