. At what distance along the central axis of a ring of radius R and uniform charge Q is the magnitude of the electric field maximum?
We know that
"E=\\frac{kqx}{(x^2+R^2)^\\frac{3}{2}}"
"\\frac{dE}{dy}=0"
"\\frac{dE}{dy}=Kq\\frac{(x^2+R^2)^\\frac{3}{2}-\\frac{3}{2}(x^2+R^2)^\\frac{1}{2}.2x^2}{x^2+R^2}"
"Kq\\frac{(x^2+R^2)^\\frac{3}{2}-\\frac{3}{2}(x^2+R^2)^\\frac{1}{2}.2x^2}{x^2+R^2}=0"
"x^2+R^2=3x^2"
"2x^2=R^2"
"x=\\frac{R}{\\sqrt{2}}"
When distance "x=\\frac{R}{\\sqrt{2}}" Electric field is maximum
Comments
Leave a comment