Question #211518

. At what distance along the central axis of a ring of radius R and uniform charge Q is the magnitude of the electric field maximum?


1
Expert's answer
2021-07-04T17:40:45-0400

We know that

E=kqx(x2+R2)32E=\frac{kqx}{(x^2+R^2)^\frac{3}{2}}

dEdy=0\frac{dE}{dy}=0

dEdy=Kq(x2+R2)3232(x2+R2)12.2x2x2+R2\frac{dE}{dy}=Kq\frac{(x^2+R^2)^\frac{3}{2}-\frac{3}{2}(x^2+R^2)^\frac{1}{2}.2x^2}{x^2+R^2}

Kq(x2+R2)3232(x2+R2)12.2x2x2+R2=0Kq\frac{(x^2+R^2)^\frac{3}{2}-\frac{3}{2}(x^2+R^2)^\frac{1}{2}.2x^2}{x^2+R^2}=0


(x2+R2)3232(x2+R2)12.2x2=0{(x^2+R^2)^\frac{3}{2}-\frac{3}{2}(x^2+R^2)^\frac{1}{2}.2x^2}=0

x2+R2=3x2x^2+R^2=3x^2

2x2=R22x^2=R^2

x=R2x=\frac{R}{\sqrt{2}}

When distance x=R2x=\frac{R}{\sqrt{2}} Electric field is maximum


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS