. At what distance along the central axis of a ring of radius R and uniform charge Q is the magnitude of the electric field maximum?
We know that
E=kqx(x2+R2)32E=\frac{kqx}{(x^2+R^2)^\frac{3}{2}}E=(x2+R2)23kqx
dEdy=0\frac{dE}{dy}=0dydE=0
dEdy=Kq(x2+R2)32−32(x2+R2)12.2x2x2+R2\frac{dE}{dy}=Kq\frac{(x^2+R^2)^\frac{3}{2}-\frac{3}{2}(x^2+R^2)^\frac{1}{2}.2x^2}{x^2+R^2}dydE=Kqx2+R2(x2+R2)23−23(x2+R2)21.2x2
Kq(x2+R2)32−32(x2+R2)12.2x2x2+R2=0Kq\frac{(x^2+R^2)^\frac{3}{2}-\frac{3}{2}(x^2+R^2)^\frac{1}{2}.2x^2}{x^2+R^2}=0Kqx2+R2(x2+R2)23−23(x2+R2)21.2x2=0
x2+R2=3x2x^2+R^2=3x^2x2+R2=3x2
2x2=R22x^2=R^22x2=R2
x=R2x=\frac{R}{\sqrt{2}}x=2R
When distance x=R2x=\frac{R}{\sqrt{2}}x=2R Electric field is maximum
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments