Answer to Question #211525 in Electricity and Magnetism for Rocky Valmores

Question #211525

Use gauss’s law to find the electric field inside and outside a spherical shell of radius R, which carries uniform surface charge density σ. Compare your answer to problem using Coulomb’s law.


1
Expert's answer
2021-07-05T08:44:56-0400

As σ\sigma is uniform, we remark that in spherical coordinates (with the origin placed at the center of the shell) the electric field E(r,θ,ϕ)E(r,\theta,\phi) will only depend on rr and will be directed towards er\vec{e}_r (unit vector in the direction of a radius-vector of a point). Therefore, for a point at the distance rr from the center of the shell let us apply the Gauss law to a spherical surface of radius rr centered at the origin. In this case we have :

sphereE(r)dS=Qinsideε0\int_{sphere}\vec{E}(r)\cdot d\vec{S} = \frac{Q_{inside}}{\varepsilon_0}

As dS=dSnd\vec{S}=dS \cdot \vec{n} (where n\vec{n} is an orthonotmal vector to the surface of the sphere) and E(r)=E(r)n\vec{E}(r)=E(r)\cdot \vec{n}, we conclude that the integral on the left is equal to E(r)4πr2E(r)\cdot 4\pi r^2.

Now let us distinguish two cases : r>Rr>R and r<Rr<R (electric field is not well defined in the case r=Rr=R). In the first case (r>Rr>R) the charge inside the region bounded by the spherical surface cointains all the charge : Qinside=σ4πR2Q_{inside}=\sigma\cdot 4\pi R^2. Therefore, we have

E(r)4πr2=σ4πR2ε0E(r)\cdot 4\pi r^2 = \frac{\sigma \cdot 4\pi R^2}{\varepsilon_0}

E(r)=σR2ε0r2E(r)=\frac{\sigma R^2}{\varepsilon_0 r^2}

In the second case (r<Rr<R) we find that the charge in the region bounded by the spherical surface is zero (as the shell carrying the charge is outside this surface) and thus we have

E(r)=0E(r)=0

Combining two results we conclude that

E(r)={0,r<RσR2ε0r2,r>R\vec{E}(r)=\begin{cases} 0 ,& r<R \\ \frac{\sigma R^2}{\varepsilon_0 r^2} ,& r>R \end{cases}


Now to use the Coulomb's law, we need to simply calculate the integral (up to rotating the coordinate system, we can suppose that the point where we calculate the field has θ=ϕ=0\theta=\phi=0) :

E(r)=shellσ(rr)4πε0rr3dS\vec{E}(r) = \int_{shell} \frac{\sigma (\vec{r}-\vec{r'})}{4\pi\varepsilon_0|\vec{r}-\vec{r'}|^3} dS

Now using the fact that we know that E\vec{E} is directed towards r\vec{r} we can simply calculate the integral of the projections on r\vec{r} :

E(r)=shellσrrrrrr4πε0rr2dSE(r) = \int_{shell} \frac{\sigma \frac{\vec{r}-\vec{r'}}{|\vec{r}-\vec{r'}|}\cdot \frac{\vec{r}}{r}}{4\pi\varepsilon_0 |\vec{r}-\vec{r'}|^2} dS

Now passing to the spherical coordinates (where dS=R2sinθdθdϕdS=R^2 \sin{\theta}d\theta d\phi) we have

E(r)=shellσ4πε0rRcosθ((rRcosθ)2+R2sin2θ)3/2R2sinθdθdϕE(r)= \int_{shell} \frac{\sigma}{4\pi\varepsilon_0}\cdot \frac{r-R\cos \theta}{((r-R\cos \theta)^2+R^2\sin^2\theta)^{3/2}} \cdot R^2 \sin\theta d\theta d\phi

E(r)=11σR22ε0rRu((rRu)2+R2R2u2)3/2duE(r)=\int_{-1}^1 \frac{\sigma R^2}{2\varepsilon_0} \frac{r-Ru}{((r-Ru)^2+R^2-R^2u^2)^{3/2}}du, where u=cosθu=\cos\theta

E(r)=σR22ε011rRu(r2+R22Rru)3/2duE(r)=\frac{\sigma R^2}{2\varepsilon_0} \int_{-1}^1 \frac{r-Ru}{(r^2+R^2-2Rru)^{3/2}} du

E(r)=σR24ε0r11R2+r22RruR2+r2(r2+R22Rru)3/2duE(r)=\frac{\sigma R^2}{4\varepsilon_0 r} \int_{-1}^1 \frac{R^2+r^2-2Rru-R^2+r^2}{(r^2+R^2-2Rru)^{3/2}}du

E(r)=σR24ε0r[r2+R22RruRr+(r2R2)Rrr2+R22Rru]11E(r)=\frac{\sigma R^2}{4\varepsilon_0 r}[\frac{-\sqrt{r^2+R^2-2Rru}}{Rr}+\frac{(r^2-R^2)}{Rr \sqrt{r^2+R^2-2Rru}}]_{-1}^1

Now let us first study the case r<Rr<R :

r2+R22Rr=Rr\sqrt{r^2+R^2-2Rr}=R-r,

r2+R2+2Rr=R+r\sqrt{r^2+R^2+2Rr}=R+r,

E(r)=σR24ε0r(2R2R)=0E(r)=\frac{\sigma R^2}{4\varepsilon_0 r}(\frac{2}{R}-\frac{2}{R})=0

And finally if r>Rr>R :

r2+R22Rr=rR\sqrt{r^2+R^2-2Rr}=r-R,

r2+R2+2Rr=r+R\sqrt{r^2+R^2+2Rr}=r+R,

E(r)=σR24ε0r(2r+2r)=σR2ε0r2E(r)=\frac{\sigma R^2}{4\varepsilon_0 r}(\frac{2}{r}+\frac{2}{r})=\frac{\sigma R^2}{\varepsilon_0 r^2}

Combining the two :

E(r)={0,r<RσR2ε0r2,r>R\vec{E}(r)=\begin{cases} 0 ,& r<R \\ \frac{\sigma R^2}{\varepsilon_0 r^2} ,& r>R \end{cases}

Therefore, we obtain the same results using the Coulomb's law and Gauss' law.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment