Answer to Question #211519 in Electricity and Magnetism for Rocky Valmores

Question #211519

A thin non-conducting rod of finite length L has a charge q spread uniformly along it. Show that the magnitude of the electric field at point P a distance y on the perpendicular bisector of the rod is given by: E = q 2π0y 1 (L2 + 4y 2) 1/2


1
Expert's answer
2021-07-05T08:56:34-0400


q= net charge

Liner charge density

"\u03bb= \\frac{q}{L}"

L=length of rod

dq=λdx

Electric field due to dq as p

"dE = \\frac{kdq}{\u03b3^2} \\\\\n\n\u03b3^2 = x^2 + y^2 \\\\\n\nE_x = \\int dEsin\u03b8 = \\int \\frac{kdq}{\u03b3^2} \\times \\frac{x}{\u03b3} \\\\\n\n= \\int \\frac{k \\times \u03bb \\times dx \\times x}{(x^2+y^2)^{3\/2}} \\\\\n\n= k \u03bb \\int^{L\/2}_{-L\/2} \\frac{xdx}{(x^2+y^2)^{3\/2}} \\\\\n\nE_x=0 \\\\\n\nE_y= \\int dEcos\u03b8 = \\int \\frac{kdq}{\u03b3^2} \\times \\frac{y}{\u03b3} \\\\\n\n= \\int \\frac{k \\times \u03bb \\times dx \\times y}{\u03b3^3} \\\\\n\n= k\u03bb y \\int^{L\/2}_{-L\/2} \\frac{dx}{(x^2+y^2)^{3\/2}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS