A thin non-conducting rod of finite length L has a charge q spread uniformly along it. Show that the magnitude of the electric field at point P a distance y on the perpendicular bisector of the rod is given by: E = q 2π0y 1 (L2 + 4y 2) 1/2
q= net charge
Liner charge density
"\u03bb= \\frac{q}{L}"
L=length of rod
dq=λdx
Electric field due to dq as p
"dE = \\frac{kdq}{\u03b3^2} \\\\\n\n\u03b3^2 = x^2 + y^2 \\\\\n\nE_x = \\int dEsin\u03b8 = \\int \\frac{kdq}{\u03b3^2} \\times \\frac{x}{\u03b3} \\\\\n\n= \\int \\frac{k \\times \u03bb \\times dx \\times x}{(x^2+y^2)^{3\/2}} \\\\\n\n= k \u03bb \\int^{L\/2}_{-L\/2} \\frac{xdx}{(x^2+y^2)^{3\/2}} \\\\\n\nE_x=0 \\\\\n\nE_y= \\int dEcos\u03b8 = \\int \\frac{kdq}{\u03b3^2} \\times \\frac{y}{\u03b3} \\\\\n\n= \\int \\frac{k \\times \u03bb \\times dx \\times y}{\u03b3^3} \\\\\n\n= k\u03bb y \\int^{L\/2}_{-L\/2} \\frac{dx}{(x^2+y^2)^{3\/2}}"
Comments
Leave a comment