Answer to Question #211519 in Electricity and Magnetism for Rocky Valmores

Question #211519

A thin non-conducting rod of finite length L has a charge q spread uniformly along it. Show that the magnitude of the electric field at point P a distance y on the perpendicular bisector of the rod is given by: E = q 2π0y 1 (L2 + 4y 2) 1/2


1
Expert's answer
2021-07-05T08:56:34-0400


q= net charge

Liner charge density

λ=qLλ= \frac{q}{L}

L=length of rod

dq=λdx

Electric field due to dq as p

dE=kdqγ2γ2=x2+y2Ex=dEsinθ=kdqγ2×xγ=k×λ×dx×x(x2+y2)3/2=kλL/2L/2xdx(x2+y2)3/2Ex=0Ey=dEcosθ=kdqγ2×yγ=k×λ×dx×yγ3=kλyL/2L/2dx(x2+y2)3/2dE = \frac{kdq}{γ^2} \\ γ^2 = x^2 + y^2 \\ E_x = \int dEsinθ = \int \frac{kdq}{γ^2} \times \frac{x}{γ} \\ = \int \frac{k \times λ \times dx \times x}{(x^2+y^2)^{3/2}} \\ = k λ \int^{L/2}_{-L/2} \frac{xdx}{(x^2+y^2)^{3/2}} \\ E_x=0 \\ E_y= \int dEcosθ = \int \frac{kdq}{γ^2} \times \frac{y}{γ} \\ = \int \frac{k \times λ \times dx \times y}{γ^3} \\ = kλ y \int^{L/2}_{-L/2} \frac{dx}{(x^2+y^2)^{3/2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment