A thin non-conducting rod of finite length L has a charge q spread uniformly along it. Show that the magnitude of the electric field at point P a distance y on the perpendicular bisector of the rod is given by: E = q 2π0y 1 (L2 + 4y 2) 1/2
q= net charge
Liner charge density
λ=qLλ= \frac{q}{L}λ=Lq
L=length of rod
dq=λdx
Electric field due to dq as p
dE=kdqγ2γ2=x2+y2Ex=∫dEsinθ=∫kdqγ2×xγ=∫k×λ×dx×x(x2+y2)3/2=kλ∫−L/2L/2xdx(x2+y2)3/2Ex=0Ey=∫dEcosθ=∫kdqγ2×yγ=∫k×λ×dx×yγ3=kλy∫−L/2L/2dx(x2+y2)3/2dE = \frac{kdq}{γ^2} \\ γ^2 = x^2 + y^2 \\ E_x = \int dEsinθ = \int \frac{kdq}{γ^2} \times \frac{x}{γ} \\ = \int \frac{k \times λ \times dx \times x}{(x^2+y^2)^{3/2}} \\ = k λ \int^{L/2}_{-L/2} \frac{xdx}{(x^2+y^2)^{3/2}} \\ E_x=0 \\ E_y= \int dEcosθ = \int \frac{kdq}{γ^2} \times \frac{y}{γ} \\ = \int \frac{k \times λ \times dx \times y}{γ^3} \\ = kλ y \int^{L/2}_{-L/2} \frac{dx}{(x^2+y^2)^{3/2}}dE=γ2kdqγ2=x2+y2Ex=∫dEsinθ=∫γ2kdq×γx=∫(x2+y2)3/2k×λ×dx×x=kλ∫−L/2L/2(x2+y2)3/2xdxEx=0Ey=∫dEcosθ=∫γ2kdq×γy=∫γ3k×λ×dx×y=kλy∫−L/2L/2(x2+y2)3/2dx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment