Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_1&=\\small (9\\times10^9).\\frac{1.5\\times5}{3^2}=7.5\\times10^9N\\\\\n\\small F_2&=\\small (9\\times10^9).\\frac{1.5\\times|-6|}{(4^2+4^2)}=2.5\\times10^9N\\\\\n\\small F_3&=\\small (9\\times10^9).\\frac{1.5\\times|-4|}{(5^2+2^2)}=1.9\\times10^9N\\\\\\\\\n\n\n\\small F_x&=\\small F_2\\cos\\alpha- F_3\\cos\\beta\\\\\n&=\\small F_2\\Big[\\frac{4}{\\sqrt{4^2+4^2}}\\Big]-F_3\\Big[\\frac{5}{\\sqrt{5^2+2^2}}\\Big]\\\\\n&=\\small 3.7\\times10^6N\\\\\n\\small F_y &=\\small F_1+F_2\\sin\\alpha+F_3\\sin\\beta\\\\\n&=\\small F_1+F_2\\Big[\\frac{4}{\\sqrt{4^2+4^2}}\\Big]+F_3\\Big[\\frac{2}{\\sqrt{5^2+2^2}}\\Big]\\\\\n&=\\small 10.0\\times10^9N\\\\\\\\\n\n\\small F_R&=\\small \\sqrt{F_x^2+F_y^2}=1.0\\times10^{10}N\\\\\n\\small \\tan\\theta&=\\small \\frac{F_y}{F_x}\\\\\n\\small \\theta&=\\small 89.98^0[S\\,of\\,W]\n\\end{aligned}"
Comments
Leave a comment