The force is related to the charge of a proton and to the field as "F = qE," where E is the field, so "F = 1.6\\cdot10^{-19}\\,\\mathrm{C}\\cdot 3.75\\cdot10^3\\,\\mathrm{N\/C} = 6\\cdot10^{-16}\\,\\mathrm{N}."
The acceleration is "a = \\dfrac{F}{m} = \\dfrac{6\\cdot10^{-16}\\,\\mathrm{N}}{1.67\\cdot10^{-27}\\,\\mathrm{kg}} = 3.6\\cdot10^{11}\\,\\mathrm{m\/s^2}."
After 1 "\\mu"s the velocity will be "v = v_0 + at = 0 + at = 3.6\\cdot10^{11}\\,\\mathrm{m\/s^2}\\cdot 1\\cdot10^{-6}\\,\\mathrm{s} = 3.6\\cdot10^5\\,\\mathrm{m\/s}."
Comments
Leave a comment