Find
lim [1/(2n+1)^2
+2/(2n+2)^2+3/(2n+3)^2+..3/25n] n→ ∞
"\\lim\\limits_{n\\to+\\infty} [\\frac{1}{(2n+1)^2}+\\frac{2}{(2n+2)^2}+\\frac{3}{(2n+3)^2}+..\\frac{3n}{(5n)^2}]=?"
Note that
"[\\frac{1}{(2n+1)^2}+\\frac{2}{(2n+2)^2}+\\dots+\\frac{3n}{(5n)^2}]+2n[\\frac{1}{(2n+1)^2}+\\frac{1}{(2n+2)^2}+\\dots+\\frac{1}{(5n)^2}]"
"=\\frac{2n+1}{(2n+1)^2}+\\frac{2n+2}{(2n+2)^2}+\\dots+\\frac{5n}{(5n)^2}=\\frac{1}{2n+1}+\\frac{1}{2n+2}+\\dots+\\frac{1}{5n}"
Therefore,
"\\frac{1}{(2n+1)^2}+\\frac{2}{(2n+2)^2}+\\dots+\\frac{3n}{(5n)^2}=\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k}-2n\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k^2}" (*)
We will get an integral estimate of both terms on the right-hand side of this equality.
For all "x\\in[k-1,k]" we have "\\frac{1}{x+1}\\leq\\frac{1}{k}\\leq \\frac{1}{x}". Thus,
"\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k} \\leq \\sum\\limits_{k=2n+1}^{5n}\\int\\limits_{k-1}^{k}\\frac{dx}{x}=\\int\\limits_{2n}^{5n}\\frac{dx}{x}=\\log\\frac{5n}{2n}=\\log\\frac{5}{2}" ,
"\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k}\\geq \\sum\\limits_{k=2n+1}^{5n}\\int\\limits_{k-1}^{k}\\frac{dx}{x+1}=\\int\\limits_{2n}^{5n}\\frac{dx}{x+1}=\\log\\frac{5n+1}{2n+1}=\\log\\frac{5}{2}+O(\\frac{1}{n})" ,
Therefore,
"\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k}=\\log\\frac{5}{2}+O(\\frac{1}{n})"
Similarly,
"\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k^2} \\leq \\sum\\limits_{k=2n+1}^{5n}\\int\\limits_{k-1}^{k}\\frac{dx}{x^2}=\\int\\limits_{2n}^{5n}\\frac{dx}{x^2}=\\frac{1}{2n}-\\frac{1}{5n}=\\frac{3}{10n}"
"\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k^2} \\geq \\sum\\limits_{k=2n+1}^{5n}\\int\\limits_{k-1}^{k}\\frac{dx}{(x+1)^2}=\\int\\limits_{2n}^{5n}\\frac{dx}{(x+1)^2}=\\frac{3n}{(2n+1)(5n+1)}" "=\\frac{3}{10n}+O(\\frac{1}{n^2})"
Therefore,
"\\sum\\limits_{k=2n+1}^{5n}\\frac{1}{k^2}=\\frac{3}{10n}+O(\\frac{1}{n^2})"
Let's apply the obtained asymptotic estimates to equality (*).
"\\frac{1}{(2n+1)^2}+\\frac{2}{(2n+2)^2}+\\dots+\\frac{3n}{(5n)^2}" "=\\log\\frac{5}{2}+O(\\frac{1}{n})-2n(\\frac{3}{10n}+O(\\frac{1}{n^2}))" "=\\log\\frac{5}{2}-\\frac{3}{5}+O(\\frac{1}{n})"
"\\lim\\limits_{n\\to+\\infty} [\\frac{1}{(2n+1)^2}+\\frac{2}{(2n+2)^2}+\\frac{3}{(2n+3)^2}+..\\frac{3n}{(5n)^2}]" "=\\log\\frac{5}{2}-\\frac{3}{5}"
Answer. "\\log\\frac{5}{2}-\\frac{3}{5}"
Comments
Leave a comment