Test the series ∞ Σ n=1 (-1)^n-1. 3/(5n-2) for absolute and conditional convergence
ANSWER The series "\\sum_{n=1}^{\\infty}\\frac{{3\\cdot \\left (-1 \\right )}^{n-1}}{5n-2}" is conditionally convergent .
EXPLANATION.
First we check absolute convergence . "\\sum_{n=1}^{\\infty}\\ \\left | \\frac{{3\\cdot \\left (-1 \\right )}^{n-1}}{5n-2} \\right |=\\sum_{n=1}^{\\infty}\\frac {3 }{5n-2}" . Let "a _{n}=\\frac{3}{5n-2}."
"\\lim_{n \\rightarrow\\infty}\\frac{\\frac{3}{5n-2}}{\\frac{1}{n}}=\\lim_{n \\rightarrow\\infty}\\frac{3n}{5n-2}=\\lim_{n \\rightarrow\\infty}\\frac{3 }{5 -\\frac{2}{n}}=\\frac{3}{5}" . Since "\\lim_{n \\rightarrow\\infty}\\frac {a_{n}} {\\frac{1}{n}}=\\frac{3}{5}>0" and the series "\\sum_{n=1}^{\\infty}\\frac{1}{n}" diverges ,then by the Limit Comparison Test "\\sum_{n=1}^{\\infty}\\frac {3 }{5n-2}" diverges. Therefore , the series does not converge absolutely.
The series "\\sum_{n=1}^{\\infty}\\frac{{3\\cdot \\left (-1 \\right )}^{n-1}}{5n-2}" is alternating. Check the two conditions: "1) \\lim_{n\\rightarrow\\infty}a_{n}=\\lim_{n\\rightarrow\\infty}\\frac{3} {5n-2}=0" . "2)a _{n+1} \\leq a_{n}" , because "5\\cdot\\left ( n+1 \\right ) -2 \\ge 5 n-2\\\\" so
"\\frac{3}{5\\cdot\\left ( n+1 \\right ) -2}\\le \\frac{3}{5n-2}" .
Since the two conditions of the Alternating Series Test are satisfied , "\\sum_{n=1}^{\\infty}\\frac{{3\\cdot \\left (-1 \\right )}^{n-1}}{5n-2}" is conditionally convergent by the Alternating Series Test .
Comments
Leave a comment