Prove that
lim 1/(x+5)^2 = ∞
x→-5
We should prove that "\\forall M > 0 \\;\\; \\exists \\delta_M > 0 \\;\\; \\forall x, |x+5| < \\delta_M : |f(x)| > M."
So for M we should determine "\\delta_M."
Let "\\dfrac{1}{(x+5)^2} > M \\; \\Rightarrow \\; (x+5)^2 < \\dfrac{1}{M}, \\\\\n|x+5| < \\dfrac{1}{\\sqrt{M}}\\;, \\delta_M = \\dfrac{1}{\\sqrt{M}}."
Therefore, when x tends to -5, the value of function increases and tends to infinity.
Comments
Leave a comment