A pendulum of length π at an angle 2πΌ. Find the time period T of the pendulum. Also let πΌ β 0 and obtain the well-known formula π = 2πβ π /π .
"F = ma\n\\\\\nm{a_x} = - T\\sin \\theta \n\\\\\n\\text{If } \\sin \\theta \\sim \\theta \n\\\\\nm{a_x} = - T\\theta \n\\\\\n\\text{Taking } \\theta = \\frac{x}{l}\n\\\\\nm{a_x} = - T\\frac{x}{l} \\qquad (i)\n\\\\\nm{a_y} = T\\cos \\theta - mg\n\\\\\n\\text{If } {a_y} = 0, T = mg\n\\\\\n\\begin{array}{l}\n{a_x} = \\frac{{ - gx}}{l} = - {\\omega ^2}x\\\\\n \\Rightarrow \\omega = \\sqrt {\\frac{g}{l}} \\\\\nT = \\frac{{2\\pi }}{\\omega } = 2\\pi \\sqrt {\\frac{l}{g}} \n\\end{array}\n\\\\\n\\text{If } \\theta = 2\\alpha ,T = 2\\pi \\sqrt {2\\alpha }"
Comments
Leave a comment