Suppose that π is differentiable and π β²β²(π) exists. Prove that π β²β²(π) = lim ββπ (π(π+β)β2π(π)+π(πββ))/ β^2. Give an example where the above limit exists, but π β²β²(π) does not exist.
"f\\left( {x + h} \\right) = f\\left( x \\right) + hf'\\left( x \\right) + \\frac{{{h^2}}}{{2!}}f''\\left( x \\right) + O\\left( {{h^3}} \\right) \\qquad (i)\n\\\\\nf\\left( {x - h} \\right) = f\\left( x \\right) - hf'\\left( x \\right) + \\frac{{{h^2}}}{{2!}}f''\\left( x \\right) -O\\left( {{h^3}} \\right) \\qquad (ii)\n\\\\\n\n\\\\\n\\text{adding } (i) ~\\text{and } (ii)\nf\\left( {x + h} \\right) + f\\left( {x - h} \\right) = 2f\\left( x \\right) + \\frac{{{h^2}}}{{2!}}f''\\left( x \\right)\n\\\\\n\\text{or} f''\\left( x \\right) = \\frac{{f\\left( {x + h} \\right) - 2f\\left( x \\right) + f\\left( {x - h} \\right)}}{{{h^2}}}\n\\\\\n\\text{Taking the Limit as } h \\to 0 \n\\\\\nf''\\left( x \\right) = \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{f\\left( {x + h} \\right) - 2f\\left( x \\right) + f\\left( {x - h} \\right)}}{{{h^2}}}\n\\\\\n \\Rightarrow f''\\left( a \\right) = \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{f\\left( {a + h} \\right) - 2f\\left( a \\right) + f\\left( {a - h} \\right)}}{{{h^2}}}\n\\\\\n\\text{We need to find }f \\text{ such that } f'\\left( x \\right) = \\left| x \\right|.\n\\\\\n \\Rightarrow f\\left( x \\right) = \\int_0^x {\\left| t \\right|dt} = \\frac{{{x^2}{\\mathop{\\rm sgn}} \\left( x \\right)}}{2}\n\\\\\n\\text{Since } \\mathop {\\lim }\\limits_{h \\to 0} f\\left( {0 + h} \\right) - 2f\\left( 0 \\right) + f\\left( {0 - h} \\right) = \\frac{{{h^2}}}{2} - \\frac{{{h^2}}}{2} = 0\n\\\\\n\\text{and } \\mathop {\\lim }\\limits_{h \\to 0} {h^2} = 0,\n\\\\\n\\Rightarrow \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{f\\left( {a + h} \\right) - 2f\\left( a \\right) + f\\left( {a - h} \\right)}}{{{h^2}}}\\underline{\\underline {L.H}} \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{\\frac{d}{{dh}}\\left( {f\\left( {a + h} \\right) - 2f\\left( a \\right) + f\\left( {a - h} \\right)} \\right)}}{{\\frac{d}{{dx}}\\left( {{h^2}} \\right)}} = \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{f'\\left( h \\right) + f\\left( { - h} \\right)}}{{2h}}\n\\\\\n = \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{f'\\left( h \\right) - f\\left( { - h} \\right)}}{{2h}} = \\mathop {\\lim }\\limits_{h \\to 0} \\frac{{\\left| h \\right| + \\left| { - h} \\right|}}{{2h}} = 0\n\\\\\n\\text{Clearly, } f''\\left( 0 \\right) \\text{ does not exist since } \\left| x \\right| \\text{ is not differentiable at point 0}"
Comments
Leave a comment