Answer to Question #276070 in Real Analysis for Anaya

Question #276070
Assume that $1<p<+\infty$, a real-valued function $f$ is absolutely continuous on $[a,b]$, and its derivative $f'$ is in $L^p[a,b]$. Prove that $f$ is $\alpha$-Lipschitz, where $\alpha=1/q$, with $q$ being the conjugate exponent of $p$. 
0
Expert's answer

Answer in progress...

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS