Evaluate
lim 3nΣr=1 n^2/(4n+r)^3
n→∞
"\\displaystyle\\text{Given } \\lim_{n \\rightarrow \\infty} \\sum_{r=1}^{3n}\\frac{n^2}{(4r+n)^3} \\\\\n\\lim_{n \\rightarrow \\infty} \\sum_{r=1}^{3n}\\frac{n^2}{(4n+r)^3} = \\lim_{n \\rightarrow \\infty} \\sum_{r=1}^{3n}\\frac{\\frac{1}{n}}{(4+\\frac{r}{n})^3} \\\\\n\\text{Using the Riemann sum put } x_{r} = \\frac{r}{n} \\implies x_{r+1} - x_r = \\frac{1}{n} = \\Delta x \\\\\n\\text{when } r=1 ; \\lim_{n \\rightarrow \\infty} \\frac{r}{n} = \\lim_{n \\rightarrow \\infty} \\frac{1}{n} = 0 \\\\\n\\text{when } r=3n ; \\lim_{n \\rightarrow \\infty} \\frac{r}{n} = \\lim_{n \\rightarrow \\infty} \\frac{3n}{n} = 3 \\\\\n\\implies \\lim_{n \\rightarrow \\infty} \\sum_{r=1}^{3n}\\frac{n^2}{(4n+r)^3} = \\int_0^3 \\frac{dx}{(4+x)^3} = \\left[\\frac{-1}{2(4+x)^2}\\right]_{0}^3 = \\frac{-1}{98} + \\frac{1}{32} = \\frac{33}{1568} \\\\\n\\therefore \\lim_{n \\rightarrow \\infty} \\sum_{r=1}^{3n}\\frac{n^2}{(4n+r)^3} = \\frac{33}{1568}"
Comments
Leave a comment