State suitable conditions and prove that (ππ) β² = ππ β² + π β²π.
Let us state the suitable conditions: if the functions "f" and "g" are differentiable in each point of their common domain, then the function "fg" is differentiable in each point of this domain and "(\ud835\udc53\ud835\udc54)'= \ud835\udc53\ud835\udc54' + \ud835\udc53'\ud835\udc54."
Let us prove that "(\ud835\udc53\ud835\udc54)'= \ud835\udc53\ud835\udc54' + \ud835\udc53'\ud835\udc54:"
"(f(x)g(x))'\n=\\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)g(x+\\Delta x)-f(x)g(x)}{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)g(x+\\Delta x)-f(x+\\Delta x)g(x)+f(x+\\Delta x)g(x)-f(x)g(x)}{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)[g(x+\\Delta x)-g(x)]+[f(x+\\Delta x)-f(x)]g(x)}{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)[g(x+\\Delta x)-g(x)]}\n{\\Delta x}+ \\lim\\limits_{\\Delta x\\to 0}\\frac{[f(x+\\Delta x)-f(x)]g(x)}{\\Delta x}\n\n\\\\=\\lim\\limits_{\\Delta x\\to 0}f(x+\\Delta x)\\lim\\limits_{\\Delta x\\to 0}\\frac{g(x+\\Delta x)-g(x)}\n{\\Delta x}+ \\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)-f(x)}{\\Delta x}g(x)\n\\\\=f(x)g'(x)+f'(x)g(x)."
Comments
Leave a comment