ANSWER: the series converges.
Explanation . 1 3 ⋅ 5 + 3 5 ⋅ 8 + 5 7 ⋅ 11 + ⋯ + 2 n − 1 ( 2 n + 1 ) ⋅ ( 3 n + 2 ) + ⋯ \frac { 1 }{ 3\cdot 5 } +\frac { \sqrt { 3 } }{ 5\cdot 8 } +\frac { \sqrt { 5 } }{ 7\cdot 11 } +\cdots +\frac { \sqrt { 2n-1 } }{ (2n+1)\cdot (3n+2) } +\cdots 3 ⋅ 5 1 + 5 ⋅ 8 3 + 7 ⋅ 11 5 + ⋯ + ( 2 n + 1 ) ⋅ ( 3 n + 2 ) 2 n − 1 + ⋯
Let a n = 2 n − 1 ( 2 n + 1 ) ⋅ ( 3 n + 2 ) = n n 2 ⋅ 2 − 1 n ( 2 + 1 n ) ( 3 + 2 n ) { a }_{ n }=\frac { \sqrt { 2n-1 } }{ (2n+1)\cdot (3n+2) } =\frac { \sqrt { n } }{ { n }^{ 2 } } \cdot \frac { \sqrt { 2-\frac { 1 }{ n } } }{ \left( 2+\frac { 1 }{ n } \right) \left( 3+\frac { 2 }{ n } \right) } a n = ( 2 n + 1 ) ⋅ ( 3 n + 2 ) 2 n − 1 = n 2 n ⋅ ( 2 + n 1 ) ( 3 + n 2 ) 2 − n 1 , b n = 1 n 3 2 { b }_{ n }=\frac { 1 }{ { n }^{ \frac { 3 }{ 2 } } } b n = n 2 3 1 . Since lim n → ∞ a n b n = lim n → ∞ 2 − 1 n ( 2 + 1 n ) ( 3 + 2 n ) = 2 2 ⋅ 3 = 1 3 2 > 0 \lim _{ n\rightarrow \infty }{ \frac { { a }_{ n } }{ { b }_{ n } } =\lim _{ n\rightarrow \infty }{ \frac { \sqrt { 2-\frac { 1 }{ n } } }{ \left( 2+\frac { 1 }{ n } \right) \left( 3+\frac { 2 }{ n } \right) } } } =\frac { \sqrt { 2 } }{ 2\cdot 3 } =\frac { 1 }{ 3\sqrt { 2 } } >0\quad lim n → ∞ b n a n = lim n → ∞ ( 2 + n 1 ) ( 3 + n 2 ) 2 − n 1 = 2 ⋅ 3 2 = 3 2 1 > 0 and ∑ n = 1 ∞ 1 n 3 2 \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ \frac { 3 }{ 2 } } } } ∑ n = 1 ∞ n 2 3 1 converges, hence (by Limit Comparison Test) ∑ n = 1 ∞ 2 n − 1 ( 2 n + 1 ) ⋅ ( 3 n + 2 ) \sum _{ n=1 }^{ \infty }{ \frac { \sqrt { 2n-1 } }{ (2n+1)\cdot (3n+2) } } ∑ n = 1 ∞ ( 2 n + 1 ) ⋅ ( 3 n + 2 ) 2 n − 1 converges.
Comments