Measure theory
1)find f+ and f- if fx =cosx+1/2 0<x<2π
2)find the measure of the set{x:sinx>=1/2} for 0<x<2π
1) Consider the inequality "\\cos x+1\/2>0" for "0<x\\leq \\pi". On this interval cosine is a monotonely decreasing function, "\\cos x>-1\/2=\\cos(2\\pi\/3)" iff "0<x<2\\pi\/3".
Since "\\cos(2\\pi-x)=\\cos x", for "x\\in(\\pi,2\\pi)" "\\cos x>-1\/2" iff "0<2\\pi-x<2\\pi\/3", or "4\\pi\/3<x<2\\pi".
Finally, for "x\\in(0,2\\pi)",
if "x\\notin(2\\pi\/3,4\\pi\/3)" then "(\\cos x+1\/2)_+ =\\cos x+1\/2" and "(\\cos x+1\/2)_- =0".
if "x\\in(2\\pi\/3,4\\pi\/3)" then "(\\cos x+1\/2)_- =\\cos x+1\/2" and "(\\cos x+1\/2)_+ =0".
2) "\\{x\\in(0,2\\pi):\\sin x\\geq 1\/2\\}=(\\pi\/6, 5\\pi\/6)", therefore,
"\\mu(\\{x\\in(0,2\\pi):\\sin x\\geq 1\/2\\})=\\mu((\\frac{\\pi}{6}, \\frac{5\\pi}{6}))=\\frac{5\\pi}{6}-\\frac{\\pi}{6}=\\frac{2\\pi}{3}"
Comments
Leave a comment