17. Let f: I → R, where I is an open interval containing the point c, and let k ∈ R. Prove the following.
(a) f is differentiable at c with f ′(c) = k iff limh→0 [ f (c + h) – f (c)]/h = k.
*(b) If f is differentiable at c with f ′(c) = k, then limh→ 0 [ f (c + h) – f (c – h)]/2h = k.
(c) If f is differentiable at c with f ′(c) = k, then lim n →∞ n[f (c + 1/n) – f (c)] = k.
(d) Find counterexamples to show that the converses of parts (b) and (c) are not true.
The book is Steven R. Lay, Analysis with an introduction to proof.
Answer:-
We have given "f:I \\rightarrow R \\ \\ \\ \\ ;" I is an open interval is differentiable at "c \\in (a,b)"
and "f'(c)=k \\ \\ \\ \\ ;k\\in IR"
then f(x) can be approximated by linear function of x , "\\ \\ \\ \\because" k is a constant
"\\therefore" "f(x)=kx +d \\ \\ \\ \\ \\ \\ \\ \\ d\\in IR"
Now "f(c+h)=k(c+h)+d=kc+kh+d"
"f(c)=kc+d"
"\\therefore lim_{h\\rightarrow 0}\\frac{f(c+h)-f(c)}{h}\\\\"
"= lim_{h\\rightarrow 0} \\frac{kc+kh+d-kc-d}{h}"
"=lim_{h\\rightarrow 0}\\frac{kh}{h}\\\\\n=\\boxed{k}"
conversely
"lim_{h\\rightarrow 0}\\frac{f(c+h)-f(c)}{h}=k"
Consider two points on graph of "f(x) , [c+h,f(c+h)] , [c,f(c)]"
now slope of any line passing through the points is "\\frac{f(c+h)-f(c)}{(c+h)-(c)}"
As "lim_{h\\rightarrow 0 }" "\\frac{f(c+h)-f(c)}{(c+h)-(c)}" becomes slope of tangent at point x=c , when is also derivative of function at x=c .
"f'(c)=lim_{\\rightarrow 0}\\frac{f(c+h)-f(c)}{h}"
"\\implies \\boxed{f'(c)=k}"
(b)
given , f'(c)=k
"\\implies lim_{h\\rightarrow 0 }\\frac{f(c+h)-f(c)}{h}=k.............(1)\\\\"
Replace c by c-h
"\\implies lim_{h\\rightarrow 0 }\\frac{f(c-h+h)-f(c-h)}{h}=k.............(1)\\\\\n\\implies lim_{h\\rightarrow 0 }\\frac{f(c)-f(c-h)}{h}=k.............(2)\\\\"
add (1) and (2)
"\\implies\\boxed{ lim_{h\\rightarrow 0 }\\frac{f(c+h)-f(c-h)}{2h}=k}"
(c)
We have given ,
"f'(c)=k"
"\\implies lim_{h\\rightarrow 0 }\\frac{f(c+h)-f(c)}{h}=k"
Replace h by "1\\over n"
"\\implies As \\ h\\rightarrow 0 \\ \\ , n\\rightarrow \\infin"
"\\implies lim_{n\\rightarrow 0 }[f(c+\\frac{1}{n}-f(c)]=k"
Counter example for converse of (b)
(d)
"f(x) = \\begin{cases}\n 2x+3 &\\text{; }x\\ge 2 \\\\\n x+5 &\\text{l; } x \n<2\n\\end{cases}"
"lim _{h\\rightarrow 0} \\frac{(2+h)-f(2-h)}{2h}"
"=lim _{h\\rightarrow 0} \\frac{(2(2+h)+3)-f(2-h)}{2h}"
"=lim _{h\\rightarrow 0} \\frac{4+2h+3-2+h-5}{2h}"
"= \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\frac{3}{2}=\\boxed{k}"
now ,
"lim _{h\\rightarrow 0} \\frac{(c+h)-f(c)}{h}"
"=lim _{h\\rightarrow 0} \\frac{(2+h)-f(2)}{h}"
"=lim _{h\\rightarrow 0} \\frac{2(2+h)+3-f(2(2)+3)}{h}"
"=lim _{h\\rightarrow 0}\\frac{2h}{h}"
"\\boxed{2}\\ne k \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ [k=\\frac{3}{2}]"
Comments
Leave a comment