ย Consider any non-zero point in ๐ 2 and name it (๐,๐). Thenย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย
(i). Write any four different paths that passes through your chosen point (๐,๐).
(ii). Compute the limits of the following function when (๐ฅ,๐ฆ) โ (๐,๐) along all these four paths,ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย
ย ๐(๐ฅ,๐ฆ) = {
(๐ฅโ๐)2(๐ฆโ๐) (๐ฅโ๐)4+(๐ฆโ๐)2
, (๐ฅ,๐ฆ) โ (๐,๐) 0, (๐ฅ,๐ฆ) = (๐,๐)ย ย
(iii). Conclude from the results obtained in (ii) and answer whetherย lim (๐ฅ,๐ฆ)โ(๐,๐) ๐(๐ฅ,๐ฆ)ย exists or not.ย ย
(iv). Is the function ๐(๐ฅ,๐ฆ) continuous at the origin? Explain.ย ย
(v). Also calculate ๐๐ฅ(๐,๐)ย and ๐๐ฆ(๐,๐).ย ย
(vi). Write all points of differentiability of ๐.
i.
We consider "(a,b) = (0,0)"
Now the four different paths through "(0,0)" are
"y=x\\\\\ny=x^2\\\\\ny=x^3\\\\\ny=x^4\\\\"
ii
"f(x,y) = \\begin{cases}\n \\frac{(x-a)^2(y-b)}{(x-a)^4(y-)^2} &\\text{if } (x,y)\\not=(a,b)\\\\\n 0 &\\text{if } (x,y)=(a,b)\n\\end{cases}\\\\\\\\\nBut (a,b) = (0,0)\\\\\nf(x,y) = \\begin{cases}\n \\frac{x^2y}{x^4y^2} &\\text{if } (x,y)\\not=(0,0)\\\\\n 0 &\\text{if } (x,y)=(0,0)\n\\end{cases}\\\\\\\\\nNow, \\lim\\nolimits_{(x,y) \\to (0,0)}f(x,y)= \\lim\\nolimits_{(x,y) \\to (0,0)}\\frac{x^2y}{x^4y^2}\\\\\ny=x\\\\\n\\lim\\nolimits_{(x) \\to (0)}\\frac{x^2*x}{x^4*x^2}=0\\\\\ny=x^2\\\\\n\\lim\\nolimits_{(x) \\to (0)}\\frac{x^2*x^2}{x^4*x^4}=0.5\\\\\ny=x^3\\\\\n\\lim\\nolimits_{(x) \\to (0)}\\frac{x^2*x^3}{x^4*x^6}=0\\\\\ny=x^4\\\\\n\\lim\\nolimits_{(x) \\to (0)}\\frac{x^2*x^4}{x^4*x^8}=0\\\\"
iii.
We will conclude that along every path chosen the limit of the function exist.
iv.
The function is continuous at the origin along every path chosen except along "y=x^2" 7
v.
"f(x,y)=\\frac{x^2y}{x^4+y^2}\\\\\nf_n= \\frac{\u2202f}{\u2202x}=\\frac{(x^2+y^2)*2xy-x^2y(4x^3)}{(x^4+y^2)^2}\\\\\nf_n(0,0)= Nonexistane\\\\\nf_n= \\frac{\u2202f}{\u2202y}=\\frac{(x^4+y^2)*x^2-x^2y(2y)}{(x^4+y^2)^2}\\\\\nf_n(0,0)= Nonexistane\\\\"
vi.
The function is differentiable at every point except at (0,0)
Comments
Leave a comment