Let a,b,x be three real numbers with a>b and x>0. Which of the following statements is correct?
A. Xa>Xb if a,b>1 and for every x>0
B. Xa<Xb if X is an element of (0,1)
C.Xa<Xb if a, b>0 and for every x>1
D.Xa>Xb if a,b x>0
A.
"x^a>x^b, a>b>1,x>0"False.
Counterexample
"x^a=(\\dfrac{1}{2})^3=\\dfrac{1}{8}, x^b=(\\dfrac{1}{2})^2=\\dfrac{1}{4}"
B.
"x^a<x^b, a>b,0<x<1"True.
The function "f(t)=x^t" is decreasing, if "0<x<1." Then
C.
"x^a<x^b, a>b>0,x>1"False.
Counterexample
"x^a=(2)^3=8, x^b=(2)^2=4""8>4=>x^a>x^b"
D.
"x^a>x^b, a>b>0,x>0"False.
Counterexample
"x^a=(\\dfrac{1}{2})^3=\\dfrac{1}{8}, x^b=(\\dfrac{1}{2})^2=\\dfrac{1}{4}"
Comments
Leave a comment