For x and y in R, let d(x,y)=(|x-y|)/(1+|x-y|),prove that d defines a.bounded metric on R
1)
Positivity: "d(x,y)\\ge0" with equality if x=y
2)
Symmetry: "d(x,y)=d(y,x)"
"\\frac{|x-y|}{1+|x-y|}=\\frac{|y-x|}{1+|y-x|}"
3)
Triangle Inequality: "d(x,y)\\le d(x,z)+d(z,y)"
"d(x,y)=\\frac{|x-y|}{1+|x-y|}=\\frac{|(x-z)+(z-y)|}{1+|(x-z)+(z-y)|}\\le \\frac{|(x-z)+(z-y)|}{1+|(x-z)+(z-y)|}=d(x,z)+d(z,y)"
Comments
Leave a comment